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A method is proposed to search for topological relations between periodic nets.

The method is based on a sequence of steps of decreasing the node degree and

symmetry of the initial net (supernet) and, as a result, gives all its subnets. It is

implemented into the program package TOPOS which automatically constructs

the net relation graph (NRG) for a given set of initial nets. The method is used to

find all supernet–subnet relations for 924 initial 4–12-coordinated uninodal nets.

The resulting NRG consists of 6528 3–12-coordinated uninodal nets; 5278 of

them have topologies not described earlier. It is shown that many NRG

properties are useful in crystal chemistry. In particular, a path between NRG

nodes corresponds to a sequence of transformations that relate the nets, the

adjacency sequence of a NRG node may be used as a criterion for

crystallochemical ‘significance’ of the corresponding net. Many well known

net topologies are found to have a large number of relations with other

topologies that cause their special place in the NRG and crystallochemical

‘significance’. The peculiarities of the proposed approach are illustrated by

examples of the nets often occurring in crystal structures.

1. Introduction

The concept of periodic nets1 plays an important role in

modern crystal chemistry. Starting from pioneer works of

Wells (1954, 1977), this concept was highly developed in the

1980s–90s (O’Keeffe & Hyde, 1996) and became a powerful

tool to analyse the topological properties of crystal structures.

Many topological parameters of periodic nets, such as node

degree, coordination sequence, ring size, interpenetration

pattern, have a chemical meaning and are used in supra-

molecular chemistry, crystal engineering and design

(Öhrström & Larsson, 2005; Koch et al., 2006; Carlucci et al.,

2007). In the last decade, other topological constructions

based on the periodic nets, namely tilings and dual nets,

appeared in the literature (Delgado-Friedrichs et al., 2005;

Hyde et al., 2006).

However, until recently, the properties of individual nets

were mainly analysed, and much less attention was paid to

hierarchical relations between nets and to the methods of their

mutual transformations. Although these problems were of

great interest in crystal chemistry long ago, the results were

usually not systematic and were obtained with time-consuming

visual and handmade analysis. The most extensive work (not

finished yet) has been that to consider relations between

sphere packings (see Koch et al., 2006, and references therein).

Some net–subnet relations are gathered in the RCSR2 data-

base. Knowing the relations between nets, one can find

possible ways of transitions from one net to another. All the

transition pathways pass through a common subnet of the

related nets. The condition of preserving the three-dimen-

sional connected subnet during the transition requires that the

subnet space group has to be a common subgroup of the space

groups of initial and target nets. This approach was applied to

consider in detail possible phase transitions for NaCl–CsCl,

ZnS (zinc-blende)–NaCl, ZnS (wurtzite)–NaCl, quartz–tri-

dimite and diamond–lonsdaleite structure-type pairs (Sowa &

Koch, 2001, 2002; Sowa, 2005, and references therein). An

alternative approach based on periodic surfaces was devel-

oped as well (Leoni & Zahn, 2004, and references therein).

The hierarchical net–subnet relations could help to answer

the question: why do some nets often occur in nature, whereas

other nets have never been found? This question is similar to

some extent to the question about frequent and rare space

groups in crystals, but requires a topological, not geometrical,

approach to be focused on the system of chemical bonds, not

on the details of atomic or molecular packings. Thus, Ockwig

et al. (2005) studied 1127 metal-organic frameworks and found

that in 20.7% of them the diamond (dia, 4/6/c1)3 topological

motif occurred, and other frequent topological types of

nets were primitive cubic lattice (pcu, 6/4/c1, 12.9%) and

1 The definitions of the basic terms marked as bold italic are given in Appendix
A. For more complete information on the terminology relating to crystal nets
and graphs, see Delgado-Friedrichs & O’Keeffe (2005) and Carlucci et al.
(2007).

2 Reticular Chemistry Structure Resource, http://rcsr.anu.edu.au/.
3 Hereafter, the RCSR three-letter symbols (if any) are used for nets. Fischer’s
symbols k/m/fn (cf. Koch et al., 2006) are given for sphere packings together
with the RCSR names.



3-coordinated srs (3/10/c1, 6.4%) nets. It was found that the

nets with high frequency are topologically highly symmetrical

and, in particular, have small numbers of kinds of nodes and

edges. Thus, uninodal and edge-transitive nets must be of

special interest in crystal design (Delgado-Friedrichs et al.,

2006). Similar results were obtained for interpenetrating

metal-organic (Blatov et al., 2004) and inorganic (Baburin et

al., 2005) frameworks; albeit the numbers for net frequencies

were different, the first triple of nets (dia–pcu–srs) was the

same.

One of the main obstacles in understanding net–subnet

relations is lack of a general algorithm for enumerating peri-

odic subnets. A strict graph-theoretical approach based on the

representation of a net as a labelled quotient graph (Klein,

1996; Klee, 2004; Eon, 2005) has serious computational diffi-

culties and up to now has not been implemented as an avail-

able computer application. Moreover, because the number of

periodic subnets for a given periodic net is generally infinite,

one needs some restriction criteria to select crystal-

lochemically ‘significant’ nets. At present, the electronic

resources that collect such ‘significant’ nets are the RCSR

database and the TTD4 collection, where the nets are selected

manually from real crystal structures.

Recently, Blatov (2006a) proposed an algorithm for

systematic generation of crystal-structure representations as

subgraphs of the labelled quotient graph of an initial crystal

structure. In this procedure, the ‘significant’ representations

are chosen by some chemical property, in particular, by the

strength of interatomic bonds. The algorithm was imple-

mented into the program package TOPOS (Blatov, 2006a,b)

to process crystal structures of any complexity. When

analysing abstract periodic nets, one should replace this

criterion with a more formal one; it seems reasonable to

consider the net simplicity or high symmetry (Ockwig et al.,

2005) as such a criterion. In this paper, we unite the labelled-

quotient-graph description of the net, the group–subgroup

method of searching for net relations and the computer tools

for generating crystal-structure representations to derive all

uninodal subnets for all RCSR uninodal nets and sphere

packings and to find the pathways of their mutual transfor-

mations.

2. The method to search for topological relations
between nets

Below we study only three-dimensional periodic uninodal

nets, including interpenetrating arrays of equivalent nets.

However, the method described can easily be applied to nets

with any prescribed finite number of inequivalent nodes; no

special improvement is required. Any node degree (coordi-

nation number) is allowed, but for the uninodal nets collected

in RCSR the maximal node degree is 16 (dia-x); for sphere

packings, evidently, it does not exceed 12.

2.1. Generating subnets

To produce all uninodal subnets of a given net, we use the

following two-step procedure.

(i) Let us consider a three-dimensional periodic net A

(supernet) whose most symmetrical Euclidean embedding

corresponds to a space group G. Note that the intrinsic

symmetry of the net may be higher than G, we are not limited

to only crystallographic nets, for which the automorphism

group must be isomorphic to G (Klee, 2004). Moreover, the

net may be not single, i.e. a set of equivalent interpenetrating

nets may exist. To derive a three-dimensional periodic subnet

S(A), we should remove some edges from A keeping the

three-dimensional periodicity. If we hold the space group, this

is possible only if there are at least two kinds of edges, i.e. the

initial net is not edge-transitive. If the number of inequivalent

edges is higher than 1, the edges may be broken in m ways

(m > 1). As a result, A can transform again to a single three-

dimensional periodic net, to a set of interpenetrating three-

dimensional periodic nets or to nets with a decreased

dimensionality depending on the symmetry group of S(A) (cf.

Koch et al., 2006). In general, not all the m ways give subnets

of different topology, especially if A is highly symmetrical. All

symmetrically and topologically inequivalent three-dimen-

sional subnets generated at this step together with the initial

net form a set of nets for further generation.

(ii) For each net from the set, all variants of decreasing its

symmetry are considered that keep the given number of

inequivalent nodes, for instance, retain the single inequivalent

node in the case of uninodal nets. In general, all non-iso-

morphic translation-equivalent and class-equivalent maximal

subgroups as well as isomorphic subgroups with enlarged unit

cell (International Tables for Crystallography, 2004) should be

considered for G. For each uninodal net with decreased

symmetry generated at this step, the procedure is repeated

starting from the first step until no subnet with new topology is

found at the first step or no uninodal net with decreased

symmetry is obtained at the second step.

All initial nets taken from RCSR or from the data on sphere

packings are already represented in the most symmetrical

embedding. To find such embeddings for new nets generated

in this work, we have used the Gavrog Systre program (http://

gavrog.org). To test the subnets for isomorphism, three

topological indices have been applied: (i) coordination

sequence {Nk}; in our study, k = 1–10, i.e. the first ten coordi-

nation shells are considered; (ii) extended Schläfli symbol

collecting the size and number of shortest circuits in the net;

(iii) vertex symbol that extracts rings from Schläfli symbols.

The subnets are assumed isomorphic if they have all the

indices equivalent. Note that RCSR and sphere-packing lists

contain five pairs of nets, lcv-f (3/4/c7)–sin (3/4/c6), noy

(5/4/o1)–zfd (5/4/t17), srs-f (5/3/c30)–srs-g (5/3/c31), svp

(7/3/t13)–7/3/o2 and wgy (6/3/t11)–6/3/o2, with equal coordi-

nation sequences and extended Schläfli symbols, and one pair,

sxb–sxc, with equal coordination sequences and vertex

symbols, but all three indices distinguish these nets. In

comparison with a stricter approach used in Gavrog Systre
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4 TOPOS Topological Database, http://www.topos.ssu.samara.ru.



(Delgado-Friedrichs & O’Keeffe, 2003), the method of topo-

logical indices is more universal because it allows one to work

with non-crystallographic nets and crystallographic nets with

collisions.

Example 1. The quartz topological type (qtz, 4/6/h1) has the

most symmetrical embedding in the space group P6222; the net

is uninodal and edge-transitive. Therefore, the subnets with

non-trivial topology can be obtained merely by decreasing the

symmetry of the net. Only 14 low-symmetrical uninodal nets

of the same topology may be generated by group–subgroup

relations (Table 1). Nets Nos. 6, 7 and 10, 11, 12 differ only by

origin shift and give rise to the same topological types of

subnets, and nets Nos. 1, 2 and 3 are still edge-transitive and

have no non-trivial subnets at a given symmetry. In most cases,

the subnets are not three-periodic; only six ways of breaking

one edge in nets Nos. 13 and 14 give rise to the single

3-coordinated three-dimensional periodic subnet bto

(3/10/h1). Thus, bto is the only uninodal three-dimensional

periodic subnet of qtz.

Example 2. Another 4-coordinated uninodal net tcb with

highest symmetry Pnna is not a sphere packing and has two

kinds of edges. Hence the subnets can be derived even at the

highest symmetry but they are one-dimensional (Table 1; net

No. 1). There are only two kinds of three-dimensional subnets

in this case (Nos. 3 and 4) and both of them consist of inter-

penetrating arrays of two or four 3-coordinated ths (3/10/t4)

nets. Besides, Table 1 contains interesting information about

low-dimensional subnets of tcb, in particular, about triple-

stranded one-dimensional helices (net No. 5), however, such

cases lie beyond the scope of the paper.

The procedure described above was implemented into the

program package TOPOS and enables one to derive all
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Table 1
Low-symmetrical uninodal nets and subnets derived from the qtz and tcb topological types.

No.
Transformation sequence and resulting
space group†

Number of
inequivalent edges

Number of
subnets Subnet dimensionality and topology

qtz
1 P6222! P6122 (a, b, 2c; 0, 0, 1/2) 1 0
2 P6222! P62 1 0
3 P6222! P3221 (0, 0, 1/3) 1 0
4 P6222! P6422 (a, b, 2c; 0, 0, 1/2) 2 2 Array of one-dimensional chains {[100], [010], [110]}
5 P6222! P6122 (a, b, 2c) 2 2 One-dimensional chains [001]
6 P6222! P6122 (a, b, 2c; 0, 0, 1/2)! P61 2 2 One-dimensional chains [001]
7 P6222! P61 (a, b, 2c) 2 2 One-dimensional chains [001]
8 P6222! P3212 (0, 0, 1/6) 2 2 One-dimensional chains [001]
9 P6222! P3221 (0, 0, 1/3)! P3121 (a, b, 2c; 0, 0, 1/2) 2 2 Array of one-dimensional chains {[100], [010], [110]}

10 P6222! P62! P32 2 2 One-dimensional chains [001]
11 P6222! P3221 (0, 0, 1/3)! P32 2 2 One-dimensional chains [001]
12 P6222! P3212 (0, 0, 1/6)! P32 2 2 One-dimensional chains [001]
13 P6222! P6422 (a, b, 2c; 0, 0, 1/2)! P6522 (a, b, 2c) 3 6 Two cases of three-dimensional bto

Two cases of array of one-dimensional chains {[100], [010],
[110]}

Two cases of zero-dimensional dimers
14 P6222! P3212 (0, 0, 1/6)! P3112 (a, b, 2c) 4 14 Four cases of three-dimensional bto

Two cases of array of one-dimensional chains {[100], [010],
[110]}

Four cases of one-dimensional chains [001]
Four cases of zero-dimensional dimers

tcb
1 Pnna 2 2 Array of one-dimensional chains {[011], [01�11]}
2 Pnna! Pna21 (a, �c, b; 1/4, 0, 1/4) 2 2 Array of one-dimensional chains {[120], [1�220]}
3 Pnna! Pnn2 (1/4, 0, 0) 3 6 Two cases of array of two interpenetrating three-dimensional

ths (Class Ia)
Array of one-dimensional chains {[011], [01�11]}
Array of one-dimensional chains {[120], [1�220]}
Two cases of zero-dimensional dimers

4 Pnna! Pnc2 (b, c, a; 0, 1/4, 1/4) 3 6 Two cases of array of four interpenetrating three-dimensional
ths (Class Ia)

Array of one-dimensional chains {[011], [01�11]}
Array of one-dimensional chains {[120], [1�220]}
Two cases of zero-dimensional dimers

5 Pnna! P2221 (c, a, b; 1/4, 0, 1/4) 4 14 Two cases of double-deck layers (100)
Two cases of double-deck layers (010)
Two cases of array of three stranded one-dimensional helices

[003]
Array of one-dimensional chains {[101], [10�11]}
Array of one-dimensional chains {[012], [01�22]}
Two cases of one-dimensional chains [001]
Four cases of zero-dimensional dimers

† All basis transformations and origin shifts are given with reference to the basis of a previous space group in the sequence. The resulting space group is bold. Only one possible
transformation chain resulting in a given space group is shown.



non-isomorphic subnets with a finite number of inequivalent

nodes for a given set of nets.

2.2. Net relation graph

When all subnets {S(Ai)} are obtained for a given set of

supernets {Ai}, one can unite them into the same set {Bi} =

{Ai} + {S(Ai)}, find the nets relating to each Bi and represent

this information as a graph. The graph vertices correspond to

the nets Bi, while the graph edges establish the supernet–

subnet relations Bi –Bj, therefore we will call it a net relation

graph (NRG). Thus, the NRG shown in Fig. 1 is derived from

three supernets ({Ai} = {B1, B2, B3}) that have in total six

subnets ({S(Ai)} = {B4, B5, B6, B7, B8, B9}). Note that, if we

restrict the number of nets and their subnets, for instance,

considering only uninodal nets, the relation Bi–Bj –Bk does not

mean that the direct relation Bi–Bk necessary exists. Indeed,

the most symmetrical embedding of the intermediate net Bj

may have a higher symmetry than the embedding of the

corresponding subnet of Bi (examples are given in x3.1). In this

case, the transition Bi ! Bk can lead to an increase of the

number of inequivalent nodes, and the space group of a

uninodal embedding of Bk is not necessarily a subgroup of the

space group of Bi. Thus, the net B7 is a uninodal subnet both of

B1 and of B4, whereas B8 can be obtained from B1 only

through the intermediate subnet B4 (Fig. 1) after an appro-

priate increase of its space-group symmetry. The following

NRG properties are evident.

(i) The degree of an ith NRG vertex, Bi, or NRG degree of

the corresponding net, is equal to the number of nets Bj

adjacent to the net Bi, i.e. transformable to Bi by adding/

removing sets of equivalent edges to/from Bi. The set of

adjacent nets may contain both supernets and subnets of Bi,

which may have higher or lower space-group symmetry. For

instance, the net B4 (Fig. 1) has four adjacent nets; B1 and B2

are its supernets, whereas B7 and B8 are subnets.

(ii) The path Bi–Bj – . . . –Bk corresponds to a sequence of

transformations that relate the nets Bi and Bk. The shortest

path(s) Bi– . . . –Bk indicate the fastest way(s) of mutual

transformations of Bi and Bk. Thus, the net B4 is related to B2

and B8 only by the shortest (one-step) path (Fig. 1), whereas

any adjacent pair of nets in the right part, say B5 and B9, can

be transformed to each other both in one step and in three

steps.

(iii) The distance between Bi and Bk, d(BiBk), is equal to the

number of transformations in the shortest path between Bi

and Bk. If d(BiBk) = 1, there is no path between Bi and Bk,

and the corresponding nets cannot be transformed into each

other through the nets of the NRG. For instance, d(B4Bk) = 1

for k = 1, 2, 7, 8 and d(B4Bk) =1 for k = 3, 5, 6, 9 (Fig. 1).

(iv) The adjacency sequence of Bi, {Nk(Bi)}, k = 1–n, is a set

of numbers of nets Bj with d(BiBj) = k. Thus, the notion of

adjacency sequence is similar to the notion of coordination

sequence if one compares NRG and a net as abstract graphs.

N1 is equal to the NRG degree of Bi:
P

k Nk ¼ N, where N is

the number of vertices in the connected part of NRG

containing Bi. n is the length of the adjacency sequence; it

shows how many transformation steps are required to

generate all nets within the connected part of NRG starting

from Bi. The key role of the net B4 is evident in the left part of

the NRG (Fig. 1): its adjacency sequence {4} has the smallest

n = 1, i.e. any net in this part may be generated from B4 in one

step.

(v) If NRG consists of l parts, then there are l sets of nets,

such that d(BiBj) = 1 if and only if Bi and Bj belong to

different sets. The NRG in Fig. 1 consists of two parts; the nets

B1, B2, B4, B7 and B8 are topologically independent of the nets

B3, B5, B6 and B9.
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Figure 1
Net relation graph consisting of nine nets {Bi}, i = 1–9. The graph is
generated from three initial supernets Ai = {B1, B2, B3} by successively
deriving their subnets S(Ai) = {B4, B5, B6, B7, B8, B9}.

Table 2
The number of investigated uninodal three-dimensional periodic nets.

Node
degree

Number
of initial
nets

Number of
generated
subnets
with novel
topology

Node
degree

Number
of initial
nets

Number
of generated
subnets
with novel
topology

3 – 31 8 47 722
4 232 452 9 18 389
5 266 1111 10 16 140
6 222 1314 11 7 39
7 112 1080 12 4 –

Table 3
EPINET nets found among the subnets generated.

Node degree Net name†

4 sqc2075, sqc8109
5 sqc492, sqc498, sqc500, sqc3255, sqc3580, sqc3588, sqc7318,

sqc9679
6 sqc24, sqc780, sqc911, sqc2969, sqc5167, sqc5184, sqc5323,

sqc9035
8 sqc2, sqc117, sqc166, sqc876, sqc1653, sqc1878, sqc1909,

sqc5117
9 sqc8843

† Only EPINET nets are listed that are inequivalent to the RCSR nets.
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Table 4
New homogeneous sphere packings derived from uninodal nets.

Initial net Transformation sequence and resulting space group†
Node
degree Net name

a (Å)
x

b (Å) / � (�)
y

c (Å)
z

uke Fddd 3 uke-3-Fddd 5.250 1.731 6.087
0.3093 0.0842 0.0437

bct I4/mmm! P42/mmc (0, 1/2, 0)! P42/nnm
(a�b, a+b, c; 1/2, 0, 0)! Pnnn! Fddd (2a, 2b, 2c)

4 bct-4-Fddd 3.572 6.097 1.700
0.2589 0.3070 0.2106

fnl I41/amd! Fddd (a�b, a+b, c; 1/4, 3/4, 1/4) 4 fnl-4-Fddd 2.589 3.012 7.292
0.0173 0.4872 0.0681

acs P63/mmc! P�33m1! C2/m (�a+b, �a�b, c)
! C2/c (a, b, 2c)

5 acs-5-C2/c 2.445 1.600 / 102.6 2.400
0.3438 0.3750 0.3542

bct I4/mmm! P42/mmc (0, 1/2, 0)! P42/nnm
(a�b, a+b, c; 1/2, 0, 0)! Pnnn! Fddd (2a, 2b, 2c)

5 bct-5-Fddd-1 2.872 5.404 2.353
0.3340 0.0344 0.0815

bct I4/mmm! P42/mmc (0, 1/2, 0)! P42/nnm
(a�b, a+b, c; 1/2, 0, 0)! Pnnn! Fddd (2a, 2b, 2c)

5 bct-5-Fddd-2 1.595 3.668 6.080
0.2500 0.2500 0.2996

bsn I41/amd! Imma! C2/m (�a�c, b, a; 1/4, 1/4, 1/4)
! C2/c (a, b, 2c)

5 bsn-5-C2/c 2.061 2.779 / 154.0 3.739
0.4002 0.4230 0.0690

nce I4/mmm! Immm! Pnnn (1/4, 1/4, 1/4)
! Fddd (2a, 2b, 2c; 1/2, 0, 0)

5 nce-5-Fddd-1 1.668 3.104 7.524
0.1250 0.4639 0.0585

nce I4/mmm! Immm! Pnnn (1/4, 1/4, 1/4)
! Fddd (2a, 2b, 2c; 1/2, 0, 0)

5 nce-5-Fddd-2 1.785 6.977 2.903
0.3750 0.1890 0.0473

nce I4/mmm! Fmmm (a�b, a+b, c)! Cmme (c, a, b; 1/4, 1/4, 0)
! Ccce (a, b, 2c; 1/4, 1/4, 0)

5 nce-5-Ccce 2.265 3.224 2.543
0.3439 0.1403 0.1110

snp P42/mmc! Cccm (a�b, a+b, c)! C2/c 5 snp-5-C2/c 3.002 2.487 / 101.7 1.752
0.3603 0.0970 0.0383

snw I41/amd! Fddd (a�b, a+b, c; 1/4, 3/4, 1/4)
! Fdd2 (c, a, b; 3/8, 0, 3/8)

5 snw-5-Fdd2 2.443 4.684 1.601
0.1787 0.0521 0.4891

sxb Cccm! Pnnn (1/4, 1/4, 0)! Fddd (2a, 2b, 2c; 1/2, 0, 1/2) 5 sxb-5-Fddd 1.787 3.787 5.367
0.3750 0.0070 0.0832

wfl I41/amd! Fddd (a�b, a+b, c; 1/4, 3/4, 1/4) 5 wfl-5-Fddd 5.417 2.316 2.903
0.0340 0.3372 0.0933

wfm I41/amd! Fddd (a�b, a+b, c; 1/4, 3/4, 1/4) 5 wfm-5-Fddd 2.809 5.346 2.446
0.3485 0.0341 0.0771

xfc I41/amd! Fddd (a�b, a+b, c; 1/4, 3/4, 1/4) 5 xfc-5-Fddd 5.314 2.741 2.562
0.0326 0.1593 0.4333

6/4/t7 I4/mmm! Fmmm (a�b, a+b, c)! Ccce (c, a, b; 1/4, 1/4, 0) 5 6/4/t7-5-Ccce-1 3.615 1.618 3.097
0.1329 0.3357 0.0948

6/4/t7 I4/mmm! Fmmm (a�b, a+b, c)! Cmce(�b, a, c) 5 6/4/t7-5-Cmce 3.786 3.003 1.640
0.3679 0.1547 0.1127

bct I4/mmm! P42/mmc (0, 1/2, 0)! P42/nnm
(a�b, a+b, c; 1/2, 0, 0)! Pnnn! Fddd (2a, 2b, 2c)

6 bct-6-Fddd 5.490 2.368 2.770
0.0375 0.0662 0.2984

eca P63/mmc! P�33m1! C2/m (�a+b, �a�b, c)
! C2/c (a, b, 2c)

6 eca-6-C2/c 2.952 1.705 / 100.1 1.911
0.1721 0.0863 0.2970

ecl I4/mmm! Fmmm (a�b, a+b, c)! Cccm (c, a, b; 1/4, 0, 1/4) 6 ecl-6-Cccm 3.860 1.000 3.970
0.3724 0.0893 0.3740

ecu Cmcm! Pbcm (1/4, 1/4, 0)! Pbcn (c, 2a, b) 6 ecu-6-Pbcn 1.634 1.826 2.920
0.3750 0.2999 0.4063

ecu Cmcm! P21/m (1/2a+1/2b, c, 1/2a�1/2b)! P21/c (a, b, 2c) 6 ecu-6-P21/c 1.632 1.634 / 146.3 2.945
0.4385 0.3752 0.1255

hex P6/mmm! Cmmm (�a+b,�a�b, c)! Pban (1/4, 1/4, 0)!
Pnnn (a, b, 2c; 0, 0, 1/2)! Fddd (2a, 2b, 2c; 1/2, 0, 0)

6 hex-6-Fddd 2.369 3.916 3.223
0.0817 0.0000 0.3437

hex P6/mmm! Cmmm (�a+b, �a�b, c)! Pmma (a, �c, b;
1/4, 1/4, 0)! P2221 (b, c, a)! C2221 (2a, 2b, c)

6 hex-6-C2221 1.823 2.739 1.786
0.1842 0.3196 0.4574

hex P6/mmm! Cmmm (�a+b, �a�b, c)! Pmma (a, �c, b;
1/4, 1/4, 0)! Cmce (2b, 2c, a)! C2/m (�b, a, c)

6 hex-6-C2/m 1.860 2.736 / 102.4 1.816
0.3054 0.3172 0.2622

nce I4/mmm! Immm! Pnnn (1/4, 1/4, 1/4)! Fddd (2a, 2b, 2c;
1/2, 0, 0)

6 nce-6-Fddd 5.589 2.355 2.651
0.2914 0.1766 0.3079

nce I4/mmm! Fmmm (a�b, a+b, c)! Cmme (c, a, b; 1/4, 1/4, 0)
! Ibca (a, b, 2c)

6 nce-6-Ibca 2.752 3.462 1.799
0.4206 0.1201 0.0955

nce I4/mmm! Fmmm (a�b, a+b, c)! Cmme (c, a, b; 1/4, 1/4, 0)
! Ccce (a, b, 2c; 1/4, 1/4, 0)

6 nce-6-Ccce 3.546 1.760 2.596
0.1160 0.0886 0.0915

nce I4/mmm! Fmmm (a�b, a+b, c)! Cmme (c, a, b; 1/4, 1/4, 0)
! Cmce (a, b, 2c)

6 nce-6-Cmce 2.737 1.859 3.545
0.1827 0.3553 0.1189

nce I4/mmm! Fmmm (a�b, a+b, c)! Cmme (c, a, b; 1/4, 1/4, 0)
! Ibam (b, 2c, a)

6 nce-6-Ibam 2.527 1.805 3.665
0.1647 0.1535 0.3636

nce I4/mmm! Fmmm (a�b, a+b, c)! Cmce (a, �c, b)! C2/c
(1/4, 1/4, 0)

6 nce-6-C2/c 1.794 2.897 / 100.2 1.685
0.2279 0.0930 0.1169

nci Fmmm! Cmme (c, a, b; 1/4, 1/4, 0)! Ccce (a, b, 2c;
1/4, 1/4, 0)

6 nci-6-Ccce 3.554 2.410 1.865
0.1188 0.0749 0.1063

ose Immm! Pmmn (1/4, 1/4, 1/4)! Pccn (a, b, 2c) 6 ose-6-Pccn-1 1.000 2.835 3.196
0.3749 0.5792 0.1342

ose Immm! Pmmn (c, a, b; 1/4, 1/4, 1/4)! Pccn (a, b, 2c) 6 ose-6-Pccn-2 2.841 1.671 1.949
0.5785 0.3170 0.1677
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Table 4 (continued)

Initial net Transformation sequence and resulting space group†
Node
degree Net name

a (Å)
x

b (Å) / � (�)
y

c (Å)
z

ose Immm! C2/m (�b+c, a, b)! C2/c (a, b, 2c) 6 ose-6-C2/c-1 1.826 2.724 / 127.0 2.244
0.0329 0.3188 0.0444

ose Immm! C2/m (�b+c, a, b)! C2/c (a, b, 2c) 6 ose-6-C2/c-2 2.119 2.838 / 127.9 1.951
0.5658 0.1719 0.0439

ose Immm! C2/m (�a�b, c, b)! C2/c (a, b, 2c) 6 ose-6-C2/c-3 3.130 1.668 / 114.6 1.950
0.1713 0.0668 0.6147

svf I4/mcm! Ibam! Pbcn (�b, a, c) 6 svf-6-Pbcn 2.408 2.367 1.449
0.3497 0.1456 0.0119

svf I4/mcm! Ibam! C2/c (a�c, b, c ) 6 svf-6-C2/c 2.849 2.364 / 122.1 1.448
0.3502 0.3541 0.3548

svg I4/mmm! Fmmm (a�b, a+b, c)! Ccce (c, b,�a; 1/4, 1/4, 0) 6 svg-6-Ccce 1.669 3.545 3.046
0.0704 0.1129 0.0905

svg I4/mmm! Fmmm (a�b, a+b, c)! Cmce (�b, a, c) 6 svg-6-Cmce 3.623 2.958 1.712
0.3620 0.1626 0.0794

svg I4/mmm! Fmmm (a�b, a+b, c)! Cmcm (b, c, a; 1/4, 0, 1/4) 6 svg-6-Cmcm 2.907 1.782 3.656
0.3280 0.3426 0.1132

wfm I41/amd! Fddd (a�b, a+b, c; 1/4, 3/4, 1/4) 6 wfm-6-Fddd 3.880 3.068 2.566
0.0020 0.3470 0.0670

bct I4/mmm! Fmmm (a�b, a+b, c)! Cmme (b, c, a; 1/4, 0, 1/4)
! Ibam (b, 2c, a)

7 bct-7-Ibam 1.833 2.476 1.676
0.3512 0.1692 0.0000

bct I4/mmm! Fmmm (a�b, a+b, c)! Cmme (0, 1/4, 1/4)!
Ibam (b, 2c, a)! C2/c (�b�c, a, c)

7 bct-7-C2/c 3.106 1.666 / 142.0 2.673
0.1609 0.1697 0.2499

eca P63/mmc! P�33m1! C2/m (�a+b, �a�b, c)! C2/c
(a, b, 2c)

7 eca-7-C2/c 2.694 1.667 / 99.9 1.927
0.3390 0.4194 0.3459

ecl I4/mmm! Fmmm (a�b, a+b, c)! Ccce (c, b,�a; 1/4, 1/4, 0) 7 ecl-7-Ccce 3.859 1.000 3.703
0.1277 0.3351 0.1169

ecl I4/mmm! Fmmm (a�b, a+b, c)! Cmce (�b, a, c) 7 ecl-7-Cmce 3.932 3.673 1.000
0.3729 0.1321 0.1210

ecu Cmcm! Pbcm (1/4, 1/4, 0)! Pbca (2a, b, c) 7 ecu-7-Pbca 1.941 2.697 1.393
0.3383 0.3831 0.1637

ecu Cmcm! C2/m (�b, a, c)! C2/c (a, b, 2c) 7 ecu-7-C2/c 2.687 1.000 / 93.9 2.690
0.1341 0.1232 0.1299

ecu Cmcm! C2/c! P21/c (1/4, 1/4, 0) 7 ecu-7-P21/c 1.000 2.697 / 103.8 1.392
0.1770 0.1169 0.2804

ele Fdd2 7 ele-7-Fdd2 2.691 5.358 1.000
0.1077 0.3100 0.0404

fcu Fm�33m! I4/mmm (1/2a�1/2b, 1/2a+1/2b, c)! P42/nnm
(1/4, 3/4, 1/4)! I41/amd (a�b, a+b, 2c; 0,1/2,0)! Fddd
(a�b, a+b, c; 1/4, 3/4, 1/4)! Fdd2 (b, c, a; 0, 3/8, 3/8)

7 fcu-7-Fdd2 2.850 3.519 1.646
0.0833 0.2058 0.1931

hex P6/mmm! Cmmm (�a+b, �a�b, c)! Ibam (a, b, 2c)!
Pbcm (�b, a, c; 1/4, 1/4, 1/4)! Pbca (2a, b, c)! Cmce‡

7 hex-7-Cmce-1 1.968 1.968 1.882
0.0000 0.1639 0.2970

hex P6/mmm! Cmmm (�a+b, �a�b, c)! Pmma (b, c, a;
1/4, 1/4, 0)! Pbcm (b, 2c, a)! Pbcn (c, 2a, b)! Cmce‡

7 hex-7-Cmce-2 1.967 3.627 1.000
0.0000 0.3694 0.3398

hex P6/mmm! Cmmm (�a+b,�a�b, c)! Imma (a,�2c, b)!
C2/m (�b�c, a, c)! C2/c (a, b, 2c)

7 hex-7-C2/c 2.202 1.872 / 116.7 1.973
0.2483 0.0436 0.1600

nce I4/mmm! Fmmm (a�b, a+b, c)! Cmce (a, �c, b) 7 nce-7-Cmce 1.646 2.850 1.760
0.0000 0.3333 0.4114

nce I4/mmm! Fmmm (a�b, a+b, c)! Cmce (a, �c, b)! C2/c
(1/4, 1/4, 0)

7 nce-7-C2/c 1.782 3.317 / 108.0 1.414
0.2086 0.1066 0.0811

nci Fmmm! Cmme (c, a, b; 1/4, 1/4, 0)! Ccce (a, b, 2c;
1/4, 1/4, 0)

7 nci-7-Ccce 1.911 3.808 1.950
0.1917 0.3720 0.0755

nci Fmmm! Cmme (c, a, b; 1/4, 1/4, 0)! Cmce (a, b, 2c) 7 nci-7-Cmce 3.955 1.955 1.904
0.1264 0.3282 0.3055

nci Fmmm! Cmme (c, a, b; 1/4, 1/4, 0)! C2/m (�b, a, c) 7 nci-7-C2/m 1.955 3.955 / 107.8 1.000
0.2673 0.1264 0.1107

tsi I41/amd! Imma! C2/m (�a�c, b, a; 1/4, 1/4, 1/4)! C2/c
(a, b, 2c)

7 tsi-7-C2/c 3.733 1.000 / 104.9 1.973
0.3805 0.4183 0.0634

tsi I41/amd! Fddd (a�b, a+b, c; 1/4, 3/4, 1/4)! C2/c
(�c, b, 1/2a+1/2c)! P21/c (1/4, 1/4, 0)

7 tsi-7-P21/c 1.392 1.393 / 104.4 1.942
0.2662 0.3359 0.2968

bct I4/mmm! Immm! Pmmn (1/4, 1/4, 1/4)
! Pnma (2c, b, �a)

8 bct-8-Pnma 1.871 1.309 1.414
0.1785 0.2500 0.1252

bct I4/mmm! Fmmm (a�b, a+b, c)! Cmme (0, 1/4, 1/4)!
Pcca (b, c, a; 1/4, 1/4, 0)! Pbcn (2b, c, a)

8 bct-8-Pbcn 1.914 1.912 1.856
0.1732 0.3098 0.0483

bct I4/mmm! Fmmm (a�b, a+b, c)! Cmme (0, 1/4, 1/4)!
Ibam (b, 2c, a)! C2/c (�b�c, a, c)

8 bct-8-C2/c-1 2.429 1.912 / 128.0 1.856
0.1734 0.1900 0.1882

bct I4/mmm! Fmmm (a�b, a+b, c)! Cmcm (�b, a, c;
1/4, 0, 1/4)! C2/m (�b, a, c)! C2/c (a, b, 2c)

8 bct-8-C2/c-2 1.920 1.921 / 104.9 1.937
0.2307 0.4352 0.1756

chb Cmcm! Pbcm (1/4, 1/4, 0)! Pbcn (c, 2a, b) 8 chb-8-Pbcn 1.000 1.937 3.486
0.3750 0.3500 0.3889

chb Cmcm! C2/m (�b, a, c)! C2/c (a, b, 2c) 8 chb-8-C2/c 3.605 1.000 / 103.9 1.980
0.3571 0.4291 0.1874



3. Analysis of relations between uninodal three-
dimensional periodic nets

Below, this approach is applied to 924 4–12-coordinated

uninodal three-dimensional periodic nets taken from RCSR

(release of November 2006) and all published lists of sphere

packings of orthorhombic, trigonal, tetragonal, hexagonal and

cubic crystal systems (Table 2). Only single (non-inter-

penetrating) nets were taken as initial (Ai) supernets,

however, interpenetrating arrays may appear as subnets (Bi).

The nets with a larger node degree were omitted because they

are a priori not sphere packings and are related to well known

topologically simpler nets, as a rule. Thus, there are merely two

such uninodal nets in RCSR, with node degrees 14 (bcu-x) and

16 (dia-x), and they are extended from an 8-coordinated bcu

(8/4/c1) and a 4-coordinated dia (4/6/c1) sphere packing,

respectively, by uniting the first two coordination shells of

nodes. With the program package TOPOS, all the supernet–

subnet relations are found and only uninodal three-dimen-

sional periodic subnets are considered. Obviously, 3-coordi-

nated nets should not be taken as initial supernets Ai because

their uninodal subnet is not three-periodic, however, the

3-coordinated nets may appear as subnets of the nets with a

higher node degree (Table 2). In this connection, it should be

noted that all 57 3-coordinated RCSR nets and sphere pack-

ings are included in the NRG as subnets of the initial

4–12-coordinated nets. As a result, the total NRG consists of

6528 topologically different 3–12-coordinated nets Bi.

3.1. New uninodal nets

The first important result is that many of the generated

subnets have novel topologies not described in the databases

on periodic nets RCSR and EPINET5 or in the lists of sphere

packings (Table 2). Moreover, the number of novel topologies

(5278; six of them are found only in interpenetrating arrays of

several equivalent nets)6 is much larger than the number of

initial nets. It is interesting that none of the new uninodal

nets is edge-transitive. Note that the greatest project on

enumeration of periodic nets, EPINET, has currently given

only 215 3–12-coordinated uninodal nets (Hyde et al., 2006),

117 of which are not collected in RCSR or in the lists of sphere

packings. It is important that, unlike the algorithm used in this

study, the EPINET nets are obtained from abstract two-

dimensional hyperbolic tilings and can be considered as a

‘random’ set of periodic nets, whose topology is independent

of any physical properties of substance. In this relation, it

should be mentioned that only 27 out of the 117 novel
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Table 4 (continued)

Initial net Transformation sequence and resulting space group†
Node
degree Net name

a (Å)
x

b (Å) / � (�)
y

c (Å)
z

feb Pnma! P21/c (b, c, a) 8 feb-8-P21/c 1.000 1.837 / 105.1 1.903
0.1673 0.1663 0.3329

nce I4/mmm! Immm! C2/m (�a�c, b, a)! C2/c (a, b, 2c) 8 nce-8-C2/c 3.633 1.000 / 107.4 1.990
0.1435 0.0504 0.5784

nci Fmmm! Cccm (c, a, b; 1/4, 0, 1/4)! C2/c (�b, a, c) 8 nci-8-C2/c 1.902 3.688 / 102.0 1.000
0.2673 0.1174 0.4080

svi-x I4/mcm! Ibam! Pbcn (�b, a, c) 8 svi-x-8-Pbcn 2.443 1.814 1.669
0.3362 0.1520 0.0704

svi-x I4/mcm! Ibam! C2/c (a�c, b, c ) 8 svi-x-8-C2/c 3.248 1.813 / 131.1 1.668
0.3364 0.3478 0.3607

tcd R�33m! C2/m (�1/3a+1/3b�2/3c, �a�b, c)
! P21/c (c, b, �a)

8 tcd-8-P21/c 1.838 1.000 / 149.0 3.571
0.3888 0.1247 0.0833

bct I4/mmm! Fmmm (a�b, a+b, c)! C2/m (a, b, �1/2a+1/2c)
! P21/m (c, b, �a; 1/4, 1/4, 0)! P21/c (a, b, 2c)

9 bct-9-P21/c 1.000 1.911 / 150.8 3.435
0.1976 0.1918 0.1745

cco Cmcm! C2/m (�b, a, c)! C2/c (a, b, 2c) 9 cco-9-C2/c 1.518 1.303 / 99.8 3.284
0.1744 0.3754 0.1338

chb Cmcm! Pbcm (1/4, 1/4, 0)! Pbca (2a, b, c) 9 chb-9-Pbca 1.977 3.236 1.000
0.3586 0.3838 0.1742

chb Cmcm! C2/m (�b, a, c)! C2/c (a, b, 2c) 9 chb-9-C2/c-1 3.225 1.000 / 92.3 1.982
0.1340 0.0665 0.1318

chb Cmcm! C2/m (�b, a, c)! C2/c (a�2c, b, 2c) 9 chb-9-C2/c-2 3.836 1.000 / 122.9 1.982
0.1340 0.0675 0.5180

elb Cmce 9 elb-9-Cmce 1.192 1.606 3.171
0.0000 0.1939 0.3766

fcu Fm�33m! I4/mmm (1/2a�1/2b, 1/2a+1/2b, c)! Immm!
Pmmn (b, c, a; 1/4, 1/4, 1/4)! P2/c (a, c, �a�b)! P21/c
(a, 2b, c)

9 fcu-9-P21/c 1.000 1.930 / 106.9 1.711
0.1371 0.1158 0.2733

gpu Fddd! C2/c (�b, a, 1/2b+1/2c)! P21/c (1/4, 1/4, 0) 9 gpu-9-P21/c 1.674 1.000 / 104.9 1.977
0.2676 0.3259 0.3079

hcp P63/mmc! Cmcm (�a�b, a�b, c)! Pbcm (1/4, 1/4, 0)!
Pbca (2a, b, c)

9 hcp-9-Pbca 1.913 1.930 1.711
0.1814 0.1158 0.1650

† See footnote to Table 1. Refined unit-cell dimensions and node positions are obtained with Gavrog Systre. ‡ Final space group is obtained with Gavrog Systre.

5 Euclidean Patterns in Non-Euclidean Tilings, http://epinet.anu.edu.au/.
6 The crystallographic data and topological indices for all new uninodal nets
are available as TOPOS crystallographic and topological databases at http://
www.topos.ssu.samara.ru.



uninodal EPINET nets are found among the generated

subnets (Table 3). This confirms once again the fact that

Nature prefers some nets and avoids other ones.

Since many initial supernets closely relate to real crystal

structures, one may expect that their subnets could also be

crystallochemically ‘significant’. In this respect, it is note-

worthy that many of them correspond to the sphere packings

not described earlier. Thus, the 3-coordinated subnet derived

from the net uke by removing one independent edge is a

sphere packing (O’Keeffe, 2006) not presented in the list of

3-coordinated sphere packings by Koch & Fischer (1995). In

Table 4, 85 nets corresponding to new homogeneous (with one

kind of sphere) sphere packings are given. Below we will apply

the symbol s-d-G-n for the new nets, where s coincides with a

conventional name of the initial net, d is an integer equal to

the degree of a node in the new net, G is the space group for

the most symmetrical embedding of the new net, n (optional)

is the ordinal number if there are several non-isomorphic nets

with a given s-d-G set.

Examples. The last two nets in Table 5 are good examples to

illustrate the algorithm of generating new nets. The symbol of

the first of these nets, hxg-d-5-Fddd, means that it is derived

from the 10-coordinated hxg-d net, is 5-coordinated, and its

highest symmetry is Fddd. It is obtained in six steps: (i)

decreasing the hxg-d symmetry by successive group–subgroup

transformations, Pn�33m ! P42/nnm (0, 1/2, 0) ! Cmme

(a� b, a + b, c; 0, 1/2, 0)! Pccm (b, c, a)! Pcca (2a, b, c); (ii)

decreasing the node degree from ten to seven by removing

three edges (Fig. 2a); (iii) finding the highest symmetry of the

resulting 7-coordinated net (Pcca ! Cmmm) with the

program Gavrog Systre; (iv) decreasing the symmetry

according to the sequence Cmmm! C2/m! C2/c (a, b, 2c);

(v) decreasing the node degree from seven to five by removing

two further edges (Fig. 2b); (vi) finding the highest symmetry

of the resulting 5-coordinated net (C2/c! Fddd; Fig. 2c). The

latter net, sqc2-5-C2/c, is obtained from the 8-coordinated

EPINET net sqc2 (Pmmm) by the following sequence: (i) the

group–subgroup transformation of the initial net, Pmmm !

Pccm (c, a, 2b) ! Ccce (2a, 2b, c) ! Pnna (�b, a, c;

1/4, 1/4, 0); (ii) decreasing the node degree from eight to six;

(iii) finding the highest symmetry of the resulting 6-coordi-

nated net (Pnna ! P4/mmm); (iv) decreasing the net

symmetry by the transformations P4/mmm ! Cmmm

(a� b, a + b, c)! C2/m! C2/c (a, b, 2c); (v) decreasing the

node degree from six to five; the resulting net has the highest

possible symmetry. The nets hxg-d-5-Fddd and sqc2-5-C2/c

relate to dia and lon nets as will be shown in x3.2.

Let us emphasize that the list of uninodal nets is not

complete, but is closed, i.e. no uninodal subnet with new

topology can be obtained from a net of the list and no new

relations may be established between the nets of the NRG.

However, a net may exist that is the supernet in relation to

some nets listed. Anyway, such a net should not be crystal-

lochemically ‘significant’ (see x3.3).

3.2. Transformation pathways between uninodal nets

The supernet–subnet relations enable one to find transfor-

mation pathways from one net to another as the paths in NRG.

There are several advantages of this approach.

(i) Topologically, the fastest transformation, i.e. requiring

the minimal number of acts of breaking or forming net edges,

can be easily found corresponding to a shortest path of NRG.
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Figure 2
The main steps in generating an hxg-d-5-Fddd net from the hxg-d net. (a)
Obtaining a 7-coordinated Pcca net; (b) obtaining a 5-coordinated C2/c
net from the 7-coordinated Pcca net symmetrized up to Cmmm; (c) final
5-coordinated net symmetrized up to Fddd. The edges to be broken are
dotted.



(ii) Unlike all net–subnet transition mechanisms proposed

earlier (Sowa & Koch, 2001, 2002) that take into account only

the transformations with a decrease of node degree (through a

subnet), the alternative pathways passing through a supernet

may be considered. For instance, the nets B5 and B6 (Fig. 1)

may be transformed to each other both through the subnet B9

and through the supernet B3. Although such mechanisms are

not suitable for the nets, where the atoms have the largest

possible coordination numbers, like polymorphs of carbon or

silica considered in the papers cited, they may be important to

describe transformations of the nets in more complicated

compounds, in particular metal-organic substances, or to

interpret pressure-induced phase transitions.

(iii) The transformation always passes through a common

supernet or subnet, whose space group is a common super-

group or subgroup of the space groups of both initial nets.

Therefore, the transformation is spatially continuous and

requires the minimal number of acts to break existing bonds or

to form new ones.

(iv) Using the net–subnet relations, one can find the

transformation pathways with target interpenetrating arrays

of uninodal nets. In this case, the initial structure may be a

single net or also an interpenetrating array of nets of different

topology or of the same topology and another number of nets

in the array.

At the same time, the approach, being purely topological,

gives no information about geometrical distortions of the nets

and motion of atoms during the transition.

Example 1. Let us consider the possible transformation

pathways for the nets of the diamond (dia, 4/6/c1) and the
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Figure 3
(a) Relations between ths, sqp, dia and lon nets. The intermediate ths net of the C2/c symmetry is shown by solid lines. Additional edges resulting in dia
and lon nets are shown by dashed and dot-and-dashed lines, respectively. One of the dashed and one of the dot-and-dashed edges are coloured in green
and magenta, respectively. One of the 10-rings in the ths net is red. The 5-coordinated net obtained from the ths net by adding both dashed and dot-and-
dashed edges is sqp. (b) Relations between hxg-d-5-Fddd, dia and lon nets. (c) Relations between noz, dia and lon nets. (d) Relations between
sqc2-5-C2/c, dia and lon nets. Breaking the red dot-and-dashed or the black dotted edges in the initial 5-coordinated net results in dia and lon nets,
respectively.



lonsdaleite (lon, 4/6/h2) topological types. Sowa & Koch

(2001) proposed the only transition mechanism through a

common 3-coordinated subnet utp (3/10/o1), whose space

group (Pnna) is a common subgroup for the space groups of

dia (Fd�33m) and lon (P63/mmc). However, according to Table

5, there is an additional transformation pathway through other

3-coordinated homogeneous sphere packings ths (3/10/t4,

I41/amd) (Fig. 3a). Unlike the transition through utp, in this

case the 3-coordinated net has a lower symmetry than the

idealized sphere packing.

Moreover, the transformation pathways dia$ lon may pass

through the nets with a higher node degree (supernets).

Because the most symmetrical dia and lon embeddings have

no common supergroup, in all the cases the nets have lower

symmetries for which the space group of the supernet

is a common supergroup. For this reason, any transition

mechanism through a supernet may be applied only to the

topological types dia and lon, where the space-group

symmetry is not crucial, not to the diamond and the lons-

daleite structure types with a fixed (highest) spatial symmetry.

There are in total 93 shortest (with one intermediate net)

transformation pathways of this kind in the NRG; 23 of them

include one of the initial RCSR nets and/or sphere packings:

5-coordinated noz (Cmce) and sqp (5/4/t6, I4/mmm); 6-coor-

dinated acs (6/4/h2, P63/mmc), pcu (6/4/c1, Pm�33m) and sxa

(Cmme); 7-coordinated 7/3/m1, ose (7/3/o5, Immm) and sev

(7/4/o1, Fmmm); 8-coordinated bcu (8/4/c1, Im�33m), eca

(8/3/h3, P63/mmc), ecu (8/3/o1, Cmcm), hex (8/3/h4, P6/mmm)

and osb (8/3/o2, Cmcm); 9-coordinated nce (9/3/t2, I4/mmm)

and nci (9/3/o1, Fmmm); 10-coordinated bct (10/3/t1,

I4/mmm), cco (10/3/o1, Cmcm), chb (10/3/o2, Cmcm) and tca

(10/3/h2, P63/mmc); 11-coordinated elb (Cmce) and svi-x

(I4/mcm); 12-coordinated fcu (12/3/c1, Fm�33m) and hcp

(12/3/h1, P63/mmc). Another 70 possible intermediate super-

nets are derived from bcu, ecu, hex, sqc2, nce, bct, cco, chb,

hxg-d, elb, svi-x, fcu and hcp. In Table 5, only the 5-coordi-

nated supernets are considered, including the new nets hxg-d-

5-Fddd and sqc2-5-C2/c, which require the minimal number of

new bonds to be formed during the transition (Figs. 3a–d).

Note that ths and sqp nets correspond to the same topological

motif, intermediate between dia and lon (Fig. 3a). Moreover,

the dia and lon nets derived from sqc2-5-C2/c have the

symmetry and unit cell of the initial net (Table 5), and the

basic 3-coordinated net formed by solid edges in Fig. 3(d) is

again ths.

Example 2. The interpenetrating array of two ths nets has

one of the largest NRG degrees (814) among the interweaving

motifs. This means that it can be derived from 814 topological

types of nets with a higher node degree. However, only 51

cases correspond to 4-coordinated nets, i.e. require breaking

merely one edge per node to give rise to the target ths array;

seven of them are well known nets (Table 6; Figs. 4a–g). Note

that in the last three cases in Table 6 the symmetries of

supernet and subnet are the same. Moreover, corresponding

lattice complexes are mentioned by Koch et al. (2006) as

containing twofold interpenetrating sphere packings of two

types: t[3/10/t4]2
I and t[3/10/t4]2

II. This fact together with the

data of Table 6 on classes of interpenetration (Blatov et al.,

2004) shows that different initial nets can give rise to different

interpenetration modes of resulting arrays. Let us emphasize

that the method described here allows one to find all inter-

penetrating motifs irrespective of their relation to sphere

packings.

Example 3. The 6-coordinated net roa (Cccm) can be

transformed to both twofold (Pnn2; Class Ia) and sixfold

(Fddd; Class IIIa) ths interpenetrating arrays by the routes

Cccm ! Ccc2 ! Pnn2 and Cccm ! Pnnn (1/4, 1/4, 0) !

Fddd (2a, 2b, 2c), respectively. Therefore, there is the trans-

formation pathway twofold ths$ roa$ sixfold ths (Figs. 5a,

b), moreover, according to the NRG, this is the only two-step

pathway through a single net to increase the number of ths

nets in the array up to six. Note that the example of a sixfold

ths array was found in metal-organic compounds (ZIBRAD)

with the same space group and class of interpenetration

(Blatov et al., 2004).

3.3. The graph of topological relations between uninodal nets

Among 6528 nets composing the NRG, there are 248

interpenetrating arrays with the number of single nets in the
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Table 5
Possible transformation pathways from the diamond to the lonsdaleite
topological type.

Transition net Transformation pathway and resulting space group†

Subnet
ths dia: Fd�33m! R�33m (�1/2a+1/2b, �1/2b+1/2c, a+b+c)

! C2/m (�1/3a+1/3b�2/3c, �a�b, c)! C2/c (a, b, 2c)
lon: P63/mmc! P�331c! C2/c (�a�b, a�b, c)

Supernet
noz Cmce! Pbcn (c, a, b; 1/4, 1/4, 0) (dia)

Cmce! C2221 (1/4, 0, 0) (lon)
sqp I4/mmm! C2/c (c, a+b, �a+b; 1/2, 0, 0) (dia)

I4/mmm! Cmcm (a�b, a+b, c; 1/4, 1/4, 1/4) (lon)
hxg-d-5-Fddd Fddd! C2/c (�b, a, 1/2b+1/2c) (dia)

Fddd! C2/c (b, c, 1/2a�1/2b; 0, 1/4, 1/4) (lon)
sqc2-5-C2/c C2/c (dia, lon)

† See footnote to Table 1.

Table 6
Possible transformation pathways resulting in twofold ths interpene-
trating array.

Initial net
Transformation pathway and resulting
space group†

Class of
interpene-
tration

cds (4/6/t4) P42/mmc! P�442c (0, 0, 1/4)! P�44n2 (a�b, a+b, c) Ia
dmp Pnna! Pnn2 (1/4, 0, 0) Ia
sqc2075 I4/mcm! Ibam IIa
tcb Pnna! Pnn2 (1/4, 0, 0) Ia
unm (4/6/t5) P42212 Ia
upa (4/4/t11) P42212 Ia
4/5/t2 I�442d IIa

† See footnote to Table 1.



array, Z, varying in the range 2–8. There are 197 arrays with

Z = 2; 24 with Z = 3; 23 with Z = 4; two with Z = 5 [the single

net topologies are dia-a (4/3/c6) and dia-f (3/4/t1)], one with

Z = 6 (ths) and one with Z = 8 (srs-a, 3/3/c1). Note that the

interpenetrating arrays were distinguished only by topology of

the single net and Z, no other characteristics of inter-

penetration were considered (cf. Koch et al., 2006). The NRG

consists of two separate subgraphs; the main subgraph

includes 6524 nets, it is analysed in detail below. The second

subgraph includes only four nets: 3/8/c3, rhr-a (3/4/c9), kfi

(4/4/c19, zeolite KFI) and wse (4/4/c18), which are related as

shown in Fig. 6. This means that the four nets cannot be

transformed to other nets through common 3–12-coordinated

uninodal supernets or subnets. The nets that have no super-

nets in the NRG are of special interest; they can be considered

as the NRG generators because all other nets can be obtained

as their descendants (subnets). The number of such generators

(151) is unexpectedly large; all of them are listed in Table 7.

Not all nets play the same role in the main subgraph; it is

reasonable to arrange them according to their NRG degree.

Obviously, the nets with a large NRG degree are important

because they lie on many transformation pathways (cf. Fig. 1).

It is not surprising that the first places are occupied by high-

coordinated nets (with node degree 10–12) that have a large

number of subnets (Table 8). However, not all high-coordi-

nated nets are at the top of the list; the place evidently

depends on the peculiarities of the net topology and symmetry.

Thus, a face-centred cubic lattice (fcu) has NRG degree much

larger than other nets, moreover, many leading nets are

derived from fcu. Comparatively, the other uninodal close

sphere packing, hcp, has a significantly smaller NRG degree.

This fact probably explains why the fcu motif prevails over

the hcp topology in the architecture of organic crystals

(Peresypkina & Blatov, 2000).

For crystal chemistry, it is important to take into account the

net coordination; the high-coordinated nets are rare in metal-

organic frameworks due to rather low typical coordination

numbers (3–6) of the metal centres. Some well known low-

coordinated nets, such as ths, dia, cds, pcu, compete with the

high-coordinated ones in the list of nets with large NRG

degree (Table 8). In Table 9, for each node degree in the range

3–6, the top ten single nets are given; most of the nets were

found in real crystal structures and have familiar RCSR

names. In all cases, the top nets frequently occur in metal-

organic frameworks according to Ockwig et al. (2005).

However, the order of occurrence does not always coincide

with the order of NRG degree. Obviously, other, not only

topological, reasons should be taken into account; for

instance, the tetrahedral coordination is more typical for the

metal centres than the rectangular coordination and, as a

result, the dia topology prevails over the cds topology in

metal-organic frameworks. At the same time, according to
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Table 7
List of the NRG generators.

Node degree Net name

4 fau, kfi, lcv-a, mdf, tcb, ten, wse
5 fce, fch, fcl, fcm, fcn, fco, fda, fdc, fnn, lcy-a-x, srs-f, srs-g, wjk,

wjm, wjn, wjq, wjr, wju, wjv, wjw
6 ana-e, nbo-f-z, pcu-m, roa, snb, snf, snh, snr, snv, sxi, sxm, sxn,

sxo, sxp, twf-e, wgz, whe, who, whq, whs, wii, wij, wip, wiq,
wir, wis, wit, wjb, wkj, wkk, wkl, wkm, wkn, wko, wkp, wkq,
wkr, wks, wmd, wmp, wmq, wmt, wne

7 7/3/t43, 7/3/t44, gar-e, iac-e, ocu-e, sva, svm, svu, svv, svw, svx,
svz, swa, swb, swe, swf, swh, toc-e, wfr, wfx, wjc, wkt, wku,
wkv, wnh, wni, wnl, wnr, wnu, wnv, wnw, wnx, wny, xfa, xfi,
xfj, xfk, xfl, xfm, xfn, xfo, xfp, xfq, xfr, xfs

8 bcs-e, ece, ech, eco, ecq, ecr, ecs, ect, ith-e, wfj, wfk, wfl, wfm,
wfn, wfo, wfp, wkw

9 naz-x, nca, ncc, nck, thp-e, wal, wfc
10 hxg-d, lcw-x, tce, tch, tci
11 ele, elf, svi-x
12 fcu, hcp, nbo-x, thp-x

Table 8
The single nets with a large NRG degree (>350).

Net
Node
degree

NRG
degree Net

Node
degree

NRG
degree

fcu (12/3/c1) 12 2231 nce (9/3/t2) 9 496
fcu-11-P42/mcm 11 1149 ths (3/10/t4) 3 479
fcu-10-Cmme 10 839 pcu (6/4/c1) 6 442
hxg-d 10 780 cds (4/6/t4) 4 434
sqc2 8 771 fcu-10-P4222 10 408
fcu-10-P42/mmc 10 721 dia (4/6/c1) 4 396
bct (10/3/t1) 10 642 fcu-9-Pccm-1 9 394
svi-x 11 614 dia-f (3/4/t1) 3 388
fcu-11-Ibam 11 539 fcu-9-Pccm-2 9 365
hcp (12/3/h1) 12 535 sqp (5/4/t6) 5 362
bnn (5/4/h5) 5 517

Table 9
The nets with largest NRG degrees depending on node degree of the net.

Node
degree Net

NRG
degree MOFs†

Node
degree Net

NRG
degree MOFs†

3 ths (3/10/t4) 479 2 5 bnn (5/4/h5) 517 1
dia-f (3/4/t1) 388 sqp (5/4/t6) 362 2
dia-g (3/4/t2) 216 sxa-5-Pccm-1 272
utg (3/8/t5) 188 sxa-5-Pccm-2 270
srs (3/10/c1) 178 1 sxa-5-Cmmm 255
3/8/t6 168 5/4/t5 240
hxg-d-3-I4122 146 6/4/t8-5-Ibam 238
pcu-h (3/6/h1) 131 nov 208 ‡
bto (3/10/h1) 113 sxa-5-Ibam 195
utp (3/10/o1) 104 bct-5-Ibam 181

4 cds (4/6/t4) 434 4 6 pcu (6/4/c1) 442 1
dia (4/6/c1) 396 1 sxa 287
4/4/t37 325 msw 229
irl (4/4/o2) 319 10 svi-x-6-P42/mcm 185
sra (4/4/o1) 300 2 rob 173
crb (4/4/t5) 254 5–7 sxd (6/3/o1) 159
lon (4/6/h2) 236 8–9 hxg-d-6-Pccm 153
sni-4-P4/nbm 234 hxg-d-6-Cmmm 151
neb (4/6/o1) 227 hxg-d-6-P4222 145
4/4/t43 194 snp (6/3/t5) 136

† Position in the list of occurrence of uninodal nets of a given coordination in metal-
organic frameworks according to Ockwig et al. (2005). ‡ The number of cases is less
than three.



Table 9, some nets with a large NRG degree are not listed in

RCSR; among them there are sphere packings 3/8/t6, 4/4/t37,

4/4/t43 and 5/4/t5.

For crystal design, it could be useful to know what kinds of

interpenetration often occur in the net interrelations. Table 10

contains such information for 3- and 4-coordinated nets

because they mostly form interpenetrating arrays. As for

single nets, the interpenetrating arrays with a large NRG

degree are frequent in metal-organic (Blatov et al., 2004) and

inorganic (Baburin et al., 2005) crystals. Moreover, the

topologies of the top single and interpenetrating nets are often

the same (Tables 9, 10); this fact is especially interesting

because they relate to quite different nets in the NRG. It is

noteworthy that the top interpenetrating arrays (Table 10)
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Figure 4
Relations between a set of two ths nets and the nets: (a) cds; (b) dmp; (c) sqc2075; (d) tcb; (e) unm; ( f ) upa; (g) 4/5/t2. Different ths nets are differently
coloured. The edges to be broken in the initial nets are dotted. In each case, a couple of catenating 10-rings of the ths nets is selected. In sqc2075, some
edges of intersecting 10-rings cross each other.



have large NRG degrees, i.e. they could be intermediate

structures in many phase transitions.

Thus, large NRG degree is an important topological

criterion for the net to be of interest in crystal chemistry. The

following physical model may be proposed to support such an

approach. Let us consider a liquid near the crystallization

point when most of the atoms are close to the positions in the

subsequent crystal. At this moment, not all interatomic bonds

are formed: the liquid ‘searches’ for an appropriate topology

by breaking existing contacts and forming new ones. In other

words, the liquid passes over many topologies that are asso-

ciated by supernet–subnet relations. Certainly, at this stage,

the nets are not periodic, but they may be considered to be

isomorphic to three-periodic nets. As a first approximation,

one may expect that the system will most often pass over the

nets that have many relations with super/subnets, i.e. have a

large NRG degree. Therefore, with a high probability, the

system will have the topology of one of these nets after crys-

tallization. If one assumes that Nature prefers high-symmetry

(uninodal and/or edge-transitive) nets (Ockwig et al., 2005),

then the nets listed in Tables 8–10 should draw attention as the

most suitable templates for crystal engineering.

Obviously, the NRG degree is not the only criterion for the

crystallochemical ‘significance’ of a net. As was mentioned in

x2.2, a short adjacency sequence indicates that the net is near

the ‘centre’ of the NRG, i.e. easily attainable from other nets.
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Figure 5
Relations between two- and sixfold ths arrays and a roa net. Breaking
dotted edges in the initial roa net results in (a) a twofold and (b) a sixfold
ths array. Different nets in the arrays are differently coloured.

Figure 6
A part of the NRG consisting of four nets. The arrows indicate decrease
of node degree during the corresponding supernet–subnet transition.

Table 10
The interpenetrating net arrays with largest NRG degrees depending on
the net coordination.

Node
degree Net Z

NRG
degree MOFs† Inorganic†

3 dia-f (3/4/t1) 4 839
ths (3/10/t4) 2 814 2 2
srs (3/10/c1) 2 785 1 1
utp (3/10/o1) 2 667
srs (3/10/c1) 4 525 ‡
dia-f (3/4/t1) 2 259 ‡
lig (3/8/t1) 4 252
lig (3/8/t1) 2 221 ‡
ths (3/10/t4) 3 191 ‡
dia-f (3/4/t1) 3 153

4 dia (4/6/c1) 2 826 1 1
sra (4/4/o1) 2 779 3 ‡
irl (4/4/o2) 2 557 ‡
lvt (4/4/t1) 2 404 ‡ ‡
uoc (4/4/t2) 2 313
dia-a (4/3/c6) 4 278
4/4/t37 2 271
crb (4/4/t5) 2 201
5/4/t5-4-Pnnn 2 183
5/4/t5-4-C222 2 168

† Position in the list of occurrence of interpenetrating uninodal nets of a given
coordination in metal-organic (Blatov et al., 2004) or inorganic (Baburin et al., 2005)
frameworks. ‡ The number of cases is three or less.



However, the length of the adjacency sequence is found to be

non-characteristic: all the nets with a large NRG degree have

adjacency sequences of length 8–10; the shortest length (8)

occurs for the net bnn. It seems more important to consider

other terms of adjacency sequence in addition to N1. Thus, the

value of N2 is equal to the number of nets that can be trans-

formed to a given one in two steps. Since the mechanisms of

phase transitions do not assume a larger number of steps, as a

rule, the nets with large N1 and N2 are of special interest. They

are indicated at the top of Fig. 7; many of them are at the head

of the lists in Tables 9 and 10. Moreover, according to Fig. 7,

there are three distinct groups of nets in the NRG: (i) the nets

with extremely large N1; they are collected in Table 8 and

scattered in the right part of Fig. 7; (ii) the nets with large N2

(>2000); many of them also have a large N1 (top left part of

Fig. 7); (iii) the nets with N1 not large and N2 < 2000 (bottom

left part of Fig. 7). Obviously, the last group contains crys-

tallochemically ‘insignificant’ nets.

4. Concluding remarks

The results presented above demonstrate that one of the most

important problems of modern crystal chemistry, the deter-

mination of suitable topological motifs for systems of inter-

atomic bonds in crystals, may be considered from a new

viewpoint. The proposed criteria for crystallochemically

‘significant’ nets are based on supernet–subnet relations and,

being purely topological, are independent of geometrical

properties of crystal structures, such as unit-cell dimensions or

features of atomic packings. They rest upon the criteria

introduced by Ockwig et al. (2005), but extend their list and

turn from general symmetry properties of nets to a more

detailed consideration of their topological peculiarities.

Obviously, the topological criteria should be used along with

well known crystallochemical descriptors referred to local

(stereochemical) or global (packing) geometrical properties of

crystals. Certainly, the uninodal nets do not cover all crystal-

lochemically ‘significant’ topological motifs. At least two other

groups of nets, edge-transitive and binodal, should be studied

to make the analysis more complete. They will be treated in a

further publication.

APPENDIX A
Basic definitions

A net is a kind of graph that is simple (without loops and

multiple edges; the edges are undirected) and connected, i.e.

each graph vertex is accessible from any other vertex through

a chain of edges; the vertices of the graph are called nodes of

the net. A certain set of net edges (or pairs of adjacent nodes)

determines net topology. Two nets are isomorphic if there are

one-to-one correspondences between their sets of nodes and

edges. The net is periodic if its symmetry group contains a

subgroup of translations. The net is uninodal and edge-tran-

sitive if all its nodes and edges are symmetrically equivalent.

A net is n-coordinated if the degree of any of its nodes is equal

to n.

A subnet (supernet) of a net A is a net whose sets of nodes

and edges are subsets (supersets) of corresponding sets of A.

A labelled quotient graph is a finite graph whose vertices

and edges correspond to sets of translationally equivalent net

nodes and edges. It may have multiple edges and loops if

corresponding net edges connect translationally different or

translationally equivalent nodes, respectively.

An embedding of a net is its realization in a space.

Euclidean embeddings are of special interest for crystal nets.

In this paper, we mainly consider faithful Euclidean embed-

dings where net nodes do not coincide with each other and

there are no crossings between edges.

A three-dimensional net is a net that has an embedding into

a three-dimensional space.

A coordination sequence {Nk} is a set of sequential numbers

N1, N2, . . . of nodes in first, second etc. coordination shells of

a node in the net. The node degree is equal to N1, and the node

is called N1-coordinated.

A circuit (cycle) is a closed chain of connected nodes.

A ring is a circuit without shortcuts, i.e. chains between two

circuit nodes that are shorter than any chain between these

nodes that belongs to the circuit.

An extended Schläfli symbol (circuit symbol) contains a

detailed description of all shortest circuits for each angle (a

couple of edges) at each inequivalent node.
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Figure 7
The distribution of the uninodal nets depending on the first two terms, N1

and N2, of their adjacency sequences in the NRG. The three groups of
nets are separated by rectangles. Some important nets are designated.



A vertex symbol gives information similar to the extended

Schläfli symbol, but for rings.

A net relation graph (NRG) is a graph whose vertices and

edges correspond to nets and supernet–subnet relations

between them.
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