Acta Crystallographica Section A

Foundations of Crystallography

ISSN 0108-7673

Received 19 January 2007
Accepted 4 May 2007

Topological relations between three-dimensional periodic nets. I. Uninodal nets

Vladislav A. Blatov
Samara State University, Ac. Pavlov St. 1, Samara 443011, Russia. Correspondence e-mail: blatov@ssu.samara.ru

Abstract

A method is proposed to search for topological relations between periodic nets. The method is based on a sequence of steps of decreasing the node degree and symmetry of the initial net (supernet) and, as a result, gives all its subnets. It is implemented into the program package TOPOS which automatically constructs the net relation graph (NRG) for a given set of initial nets. The method is used to find all supernet-subnet relations for 924 initial 4-12-coordinated uninodal nets. The resulting NRG consists of 6528 3-12-coordinated uninodal nets; 5278 of them have topologies not described earlier. It is shown that many NRG properties are useful in crystal chemistry. In particular, a path between NRG nodes corresponds to a sequence of transformations that relate the nets, the adjacency sequence of a NRG node may be used as a criterion for crystallochemical 'significance' of the corresponding net. Many well known net topologies are found to have a large number of relations with other topologies that cause their special place in the NRG and crystallochemical 'significance'. The peculiarities of the proposed approach are illustrated by examples of the nets often occurring in crystal structures.

© 2007 International Union of Crystallography Printed in Singapore - all rights reserved

Some net-subnet relations are gathered in the RCSR^{2} database. Knowing the relations between nets, one can find possible ways of transitions from one net to another. All the transition pathways pass through a common subnet of the related nets. The condition of preserving the three-dimensional connected subnet during the transition requires that the subnet space group has to be a common subgroup of the space groups of initial and target nets. This approach was applied to consider in detail possible phase transitions for $\mathrm{NaCl}-\mathrm{CsCl}$, ZnS (zinc-blende)- $\mathrm{NaCl}, \mathrm{ZnS}$ (wurtzite)- NaCl , quartz-tridimite and diamond-lonsdaleite structure-type pairs (Sowa \& Koch, 2001, 2002; Sowa, 2005, and references therein). An alternative approach based on periodic surfaces was developed as well (Leoni \& Zahn, 2004, and references therein).

The hierarchical net-subnet relations could help to answer the question: why do some nets often occur in nature, whereas other nets have never been found? This question is similar to some extent to the question about frequent and rare space groups in crystals, but requires a topological, not geometrical, approach to be focused on the system of chemical bonds, not on the details of atomic or molecular packings. Thus, Ockwig et al. (2005) studied 1127 metal-organic frameworks and found that in 20.7% of them the diamond (dia, $4 / 6 / c 1)^{3}$ topological motif occurred, and other frequent topological types of nets were primitive cubic lattice (pcu, 6/4/c1, 12.9\%) and

[^0][^1]3 -coordinated srs $(3 / 10 / c 1,6.4 \%)$ nets. It was found that the nets with high frequency are topologically highly symmetrical and, in particular, have small numbers of kinds of nodes and edges. Thus, uninodal and edge-transitive nets must be of special interest in crystal design (Delgado-Friedrichs et al., 2006). Similar results were obtained for interpenetrating metal-organic (Blatov et al., 2004) and inorganic (Baburin et al., 2005) frameworks; albeit the numbers for net frequencies were different, the first triple of nets (dia-pcu-srs) was the same.

One of the main obstacles in understanding net-subnet relations is lack of a general algorithm for enumerating periodic subnets. A strict graph-theoretical approach based on the representation of a net as a labelled quotient graph (Klein, 1996; Klee, 2004; Eon, 2005) has serious computational difficulties and up to now has not been implemented as an available computer application. Moreover, because the number of periodic subnets for a given periodic net is generally infinite, one needs some restriction criteria to select crystallochemically 'significant' nets. At present, the electronic resources that collect such 'significant' nets are the RCSR database and the TTD ${ }^{4}$ collection, where the nets are selected manually from real crystal structures.

Recently, Blatov (2006a) proposed an algorithm for systematic generation of crystal-structure representations as subgraphs of the labelled quotient graph of an initial crystal structure. In this procedure, the 'significant' representations are chosen by some chemical property, in particular, by the strength of interatomic bonds. The algorithm was implemented into the program package TOPOS (Blatov, 2006a,b) to process crystal structures of any complexity. When analysing abstract periodic nets, one should replace this criterion with a more formal one; it seems reasonable to consider the net simplicity or high symmetry (Ockwig et al., 2005) as such a criterion. In this paper, we unite the labelled-quotient-graph description of the net, the group-subgroup method of searching for net relations and the computer tools for generating crystal-structure representations to derive all uninodal subnets for all RCSR uninodal nets and sphere packings and to find the pathways of their mutual transformations.

2. The method to search for topological relations between nets

Below we study only three-dimensional periodic uninodal nets, including interpenetrating arrays of equivalent nets. However, the method described can easily be applied to nets with any prescribed finite number of inequivalent nodes; no special improvement is required. Any node degree (coordination number) is allowed, but for the uninodal nets collected in RCSR the maximal node degree is 16 (dia-x); for sphere packings, evidently, it does not exceed 12.

[^2]
2.1. Generating subnets

To produce all uninodal subnets of a given net, we use the following two-step procedure.
(i) Let us consider a three-dimensional periodic net A (supernet) whose most symmetrical Euclidean embedding corresponds to a space group G. Note that the intrinsic symmetry of the net may be higher than G, we are not limited to only crystallographic nets, for which the automorphism group must be isomorphic to G (Klee, 2004). Moreover, the net may be not single, i.e. a set of equivalent interpenetrating nets may exist. To derive a three-dimensional periodic subnet $S(A)$, we should remove some edges from A keeping the three-dimensional periodicity. If we hold the space group, this is possible only if there are at least two kinds of edges, i.e. the initial net is not edge-transitive. If the number of inequivalent edges is higher than 1 , the edges may be broken in m ways ($m>1$). As a result, A can transform again to a single threedimensional periodic net, to a set of interpenetrating threedimensional periodic nets or to nets with a decreased dimensionality depending on the symmetry group of $S(A)$ (cf. Koch et al., 2006). In general, not all the m ways give subnets of different topology, especially if A is highly symmetrical. All symmetrically and topologically inequivalent three-dimensional subnets generated at this step together with the initial net form a set of nets for further generation.
(ii) For each net from the set, all variants of decreasing its symmetry are considered that keep the given number of inequivalent nodes, for instance, retain the single inequivalent node in the case of uninodal nets. In general, all non-isomorphic translation-equivalent and class-equivalent maximal subgroups as well as isomorphic subgroups with enlarged unit cell (International Tables for Crystallography, 2004) should be considered for G. For each uninodal net with decreased symmetry generated at this step, the procedure is repeated starting from the first step until no subnet with new topology is found at the first step or no uninodal net with decreased symmetry is obtained at the second step.

All initial nets taken from RCSR or from the data on sphere packings are already represented in the most symmetrical embedding. To find such embeddings for new nets generated in this work, we have used the Gavrog Systre program (http:// gavrog.org). To test the subnets for isomorphism, three topological indices have been applied: (i) coordination sequence $\left\{N_{k}\right\}$; in our study, $k=1-10$, i.e. the first ten coordination shells are considered; (ii) extended Schläfli symbol collecting the size and number of shortest circuits in the net; (iii) vertex symbol that extracts rings from Schläfli symbols. The subnets are assumed isomorphic if they have all the indices equivalent. Note that RCSR and sphere-packing lists contain five pairs of nets, lev-f (3/4/c7)-sin (3/4/c6), noy ($5 / 4 / o 1$)-zfd ($5 / 4 / t 17$), srs-f $(5 / 3 / c 30)-$ srs-g $(5 / 3 / c 31)$, svp $(7 / 3 / t 13)-7 / 3 / o 2$ and $\mathbf{w g y}(6 / 3 / t 11)-6 / 3 / o 2$, with equal coordination sequences and extended Schläfli symbols, and one pair, sxb-sxc, with equal coordination sequences and vertex symbols, but all three indices distinguish these nets. In comparison with a stricter approach used in Gavrog Systre

Table 1
Low-symmetrical uninodal nets and subnets derived from the qtz and tcb topological types.

No.	Transformation sequence and resulting space group \dagger	Number of inequivalent edges	Number of subnets	Subnet dimensionality and topology
	qtz			
1	$P 6_{2} 22 \rightarrow \boldsymbol{P} \mathbf{6}_{1} 22(\mathbf{a}, \mathbf{b}, 2 \mathbf{c} ; 0,0,1 / 2)$	1	0	
2	$\mathrm{P6}_{2} 22 \rightarrow \mathrm{P6}_{\mathbf{2}}$	1	0	
3	$P 6_{2} 22 \rightarrow \boldsymbol{P 3}_{2} 21(0,0,1 / 3)$	1	0	
4	$P 6_{2} 22 \rightarrow \boldsymbol{P} 6_{4} 22(\mathbf{a}, \mathbf{b}, 2 \mathbf{c} ; 0,0,1 / 2)$	2	2	Array of one-dimensional chains $\{[100],[010],[110]\}$
5	$P 6_{2} 22 \rightarrow P \mathbf{6}_{1} 22$ (a, b, 2c)	2	2	One-dimensional chains [001]
6	$P 6_{2} 22 \rightarrow P 6_{1} 22(\mathbf{a}, \mathbf{b}, 2 \mathbf{c} ; 0,0,1 / 2) \rightarrow \boldsymbol{P} 6_{1}$	2	2	One-dimensional chains [001]
7	$P 6_{2} 22 \rightarrow \mathbf{P 6}_{\mathbf{1}}(\mathbf{a}, \mathbf{b}, 2 \mathbf{c})$	2	2	One-dimensional chains [001]
8	$P 6_{2} 22 \rightarrow \boldsymbol{P 3}_{2} 12(0,0,1 / 6)$	2	2	One-dimensional chains [001]
9	$P 6_{2} 22 \rightarrow P 3_{2} 21(0,0,1 / 3) \rightarrow \boldsymbol{P 3} \mathbf{1} 21(\mathbf{a}, \mathbf{b}, 2 \mathbf{c} ; 0,0,1 / 2)$	2	2	Array of one-dimensional chains $\{[100],[010],[110]\}$
10	$P 6_{2} 22 \rightarrow P 6_{2} \rightarrow \mathbf{P 3}_{2}$	2	2	One-dimensional chains [001]
11	$P 6_{2} 22 \rightarrow P 3_{2} 21(0,0,1 / 3) \rightarrow \boldsymbol{P 3}_{\mathbf{2}}$	2	2	One-dimensional chains [001]
12	$P 6_{2} 22 \rightarrow P 3_{2} 12(0,0,1 / 6) \rightarrow \mathbf{P 3}_{\mathbf{2}}$	2	2	One-dimensional chains [001]
13	$P 6_{2} 22 \rightarrow P 6_{4} 22(\mathbf{a}, \mathbf{b}, 2 \mathbf{c} ; 0,0,1 / 2) \rightarrow \mathbf{P 6}_{5} \mathbf{2 2}(\mathbf{a}, \mathbf{b}, 2 \mathbf{c})$	3	6	Two cases of three-dimensional bto Two cases of array of one-dimensional chains \{[100], [010], $[110]\}$
				Two cases of zero-dimensional dimers
14	$P 6_{2} 22 \rightarrow P 3_{2} 12(0,0,1 / 6) \rightarrow \mathbf{P 3}_{\mathbf{1}} \mathbf{1 2}(\mathbf{a}, \mathbf{b}, 2 \mathbf{c})$	4	14	Four cases of three-dimensional bto Two cases of array of one-dimensional chains $\{[100],[010]$, [110]\} Four cases of one-dimensional chains [001] Four cases of zero-dimensional dimers
	tcb			
1	Pnna	2	2	Array of one-dimensional chains $\{[011],[01 \overline{1}]\}$
2	Pnna $\rightarrow \operatorname{Pna2}_{\mathbf{1}}(\mathbf{a},-\mathbf{c}, \mathbf{b} ; 1 / 4,0,1 / 4)$	2	2	Array of one-dimensional chains $\{[120],[120]\}$
3	Pnna \rightarrow Pnn2 (1/4, 0, 0)	3	6	Two cases of array of two interpenetrating three-dimensional ths (Class Ia) Array of one-dimensional chains $\{[011],[01 \overline{1}]\}$ Array of one-dimensional chains $\{[120],[1 \overline{2} 0]\}$ Two cases of zero-dimensional dimers
4	Pnna $\rightarrow \boldsymbol{P n c 2}$ (b, c, a; 0, 1/4, 1/4)	3	6	Two cases of array of four interpenetrating three-dimensional ths (Class Ia) Array of one-dimensional chains $\{[011],[01 \overline{1}]\}$ Array of one-dimensional chains $\{[120],[120]\}$ Two cases of zero-dimensional dimers
5	Pnna $\rightarrow \mathrm{P222}_{1}(\mathbf{c}, \mathbf{a}, \mathbf{b} ; 1 / 4,0,1 / 4)$	4	14	Two cases of double-deck layers (100) Two cases of double-deck layers (010) Two cases of array of three stranded one-dimensional helices [003] Array of one-dimensional chains $\{[101],[10 \overline{1}]\}$ Array of one-dimensional chains $\{[012],[01 \overline{2}]\}$ Two cases of one-dimensional chains [001] Four cases of zero-dimensional dimers

\dagger All basis transformations and origin shifts are given with reference to the basis of a previous space group in the sequence. The resulting space group is bold. Only one possible transformation chain resulting in a given space group is shown.
(Delgado-Friedrichs \& O'Keeffe, 2003), the method of topological indices is more universal because it allows one to work with non-crystallographic nets and crystallographic nets with collisions.

Example 1. The quartz topological type (qtz, 4/6/h1) has the most symmetrical embedding in the space group $P 6_{2} 22$; the net is uninodal and edge-transitive. Therefore, the subnets with non-trivial topology can be obtained merely by decreasing the symmetry of the net. Only 14 low-symmetrical uninodal nets of the same topology may be generated by group-subgroup relations (Table 1). Nets Nos. 6, 7 and 10, 11, 12 differ only by origin shift and give rise to the same topological types of subnets, and nets Nos. 1, 2 and 3 are still edge-transitive and have no non-trivial subnets at a given symmetry. In most cases, the subnets are not three-periodic; only six ways of breaking one edge in nets Nos. 13 and 14 give rise to the single

3-coordinated three-dimensional periodic subnet bto ($3 / 10 / h 1$). Thus, bto is the only uninodal three-dimensional periodic subnet of qtz.

Example 2. Another 4-coordinated uninodal net tcb with highest symmetry Pnna is not a sphere packing and has two kinds of edges. Hence the subnets can be derived even at the highest symmetry but they are one-dimensional (Table 1; net No. 1). There are only two kinds of three-dimensional subnets in this case (Nos. 3 and 4) and both of them consist of interpenetrating arrays of two or four 3-coordinated ths (3/10/t4) nets. Besides, Table 1 contains interesting information about low-dimensional subnets of tcb, in particular, about triplestranded one-dimensional helices (net No. 5), however, such cases lie beyond the scope of the paper.

The procedure described above was implemented into the program package TOPOS and enables one to derive all

Table 2
The number of investigated uninodal three-dimensional periodic nets.
$\left.\begin{array}{llllll}\hline & \begin{array}{l}\text { Number of } \\ \text { generated } \\ \text { subnets }\end{array} & & \begin{array}{l}\text { Number } \\ \text { of generated } \\ \text { subnets }\end{array} \\ \text { Node } & \begin{array}{l}\text { Number } \\ \text { of initial } \\ \text { with novel } \\ \text { degree }\end{array} & \text { nets }\end{array} \quad \begin{array}{l}\text { Node } \\ \text { topology } \\ \text { degree }\end{array} \quad \begin{array}{l}\text { Number } \\ \text { of initial } \\ \text { nets }\end{array}\right)$
non-isomorphic subnets with a finite number of inequivalent nodes for a given set of nets.

2.2. Net relation graph

When all subnets $\left\{S\left(A_{i}\right)\right\}$ are obtained for a given set of supernets $\left\{A_{i}\right\}$, one can unite them into the same set $\left\{B_{i}\right\}=$ $\left\{A_{i}\right\}+\left\{S\left(A_{i}\right)\right\}$, find the nets relating to each B_{i} and represent this information as a graph. The graph vertices correspond to the nets B_{i}, while the graph edges establish the supernetsubnet relations $B_{i}-B_{j}$, therefore we will call it a net relation graph (NRG). Thus, the NRG shown in Fig. 1 is derived from three supernets $\left(\left\{A_{i}\right\}=\left\{B_{1}, B_{2}, B_{3}\right\}\right)$ that have in total six subnets $\left(\left\{S\left(A_{i}\right)\right\}=\left\{B_{4}, B_{5}, B_{6}, B_{7}, B_{8}, B_{9}\right\}\right)$. Note that, if we restrict the number of nets and their subnets, for instance, considering only uninodal nets, the relation $B_{i}-B_{j}-B_{k}$ does not mean that the direct relation $B_{i}-B_{k}$ necessary exists. Indeed, the most symmetrical embedding of the intermediate net B_{j} may have a higher symmetry than the embedding of the corresponding subnet of B_{i} (examples are given in §3.1). In this case, the transition $B_{i} \rightarrow B_{k}$ can lead to an increase of the number of inequivalent nodes, and the space group of a uninodal embedding of B_{k} is not necessarily a subgroup of the space group of B_{i}. Thus, the net B_{7} is a uninodal subnet both of B_{1} and of B_{4}, whereas B_{8} can be obtained from B_{1} only through the intermediate subnet B_{4} (Fig. 1) after an appro-

decrease of net coordination and symmetry

Figure 1
Net relation graph consisting of nine nets $\left\{B_{i}\right\}, i=1-9$. The graph is generated from three initial supernets $A_{i}=\left\{B_{1}, B_{2}, B_{3}\right\}$ by successively deriving their subnets $S\left(A_{i}\right)=\left\{B_{4}, B_{5}, B_{6}, B_{7}, B_{8}, B_{9}\right\}$.

Table 3
EPINET nets found among the subnets generated.

Node degree	Net name \dagger
4	sqc2075, sqc8109 sqc492, sqc498, sqc500, sqc3255, sqc3580, sqc3588, sqc7318, 5
$6 q c 9679$	
6	$s q c 24$, sqc780, sqc911, sqc2969, sqc5167, sqc5184, sqc5323,
	$s q c 9035$
8	$s q c 2$, sqc117, sqc166, sqc876, sqc1653, sqc1878, sqc1909,
	$s q c 5117$
9	$s q c 8843$

\dagger Only EPINET nets are listed that are inequivalent to the RCSR nets.
priate increase of its space-group symmetry. The following NRG properties are evident.
(i) The degree of an i th NRG vertex, B_{i}, or NRG degree of the corresponding net, is equal to the number of nets B_{j} adjacent to the net B_{i}, i.e. transformable to B_{i} by adding/ removing sets of equivalent edges to/from B_{i}. The set of adjacent nets may contain both supernets and subnets of B_{i}, which may have higher or lower space-group symmetry. For instance, the net B_{4} (Fig. 1) has four adjacent nets; B_{1} and B_{2} are its supernets, whereas B_{7} and B_{8} are subnets.
(ii) The path $B_{i}-B_{j}-\ldots-B_{k}$ corresponds to a sequence of transformations that relate the nets B_{i} and B_{k}. The shortest path(s) $B_{i}-\ldots-B_{k}$ indicate the fastest way(s) of mutual transformations of B_{i} and B_{k}. Thus, the net B_{4} is related to B_{2} and B_{8} only by the shortest (one-step) path (Fig. 1), whereas any adjacent pair of nets in the right part, say B_{5} and B_{9}, can be transformed to each other both in one step and in three steps.
(iii) The distance between B_{i} and $B_{k}, d\left(B_{i} B_{k}\right)$, is equal to the number of transformations in the shortest path between B_{i} and B_{k}. If $d\left(B_{i} B_{k}\right)=\infty$, there is no path between B_{i} and B_{k}, and the corresponding nets cannot be transformed into each other through the nets of the NRG. For instance, $d\left(B_{4} B_{k}\right)=1$ for $k=1,2,7,8$ and $d\left(B_{4} B_{k}\right)=\infty$ for $k=3,5,6,9$ (Fig. 1).
(iv) The adjacency sequence of $B_{i},\left\{N_{k}\left(B_{i}\right)\right\}, k=1-n$, is a set of numbers of nets B_{j} with $d\left(B_{i} B_{j}\right)=k$. Thus, the notion of adjacency sequence is similar to the notion of coordination sequence if one compares NRG and a net as abstract graphs. N_{1} is equal to the NRG degree of $B_{i}: \sum_{k} N_{k}=N$, where N is the number of vertices in the connected part of NRG containing $B_{i} . n$ is the length of the adjacency sequence; it shows how many transformation steps are required to generate all nets within the connected part of NRG starting from B_{i}. The key role of the net B_{4} is evident in the left part of the NRG (Fig. 1): its adjacency sequence $\{4\}$ has the smallest $n=1$, i.e. any net in this part may be generated from B_{4} in one step.
(v) If $N R G$ consists of l parts, then there are l sets of nets, such that $d\left(B_{i} B_{j}\right)=\infty$ if and only if B_{i} and B_{j} belong to different sets. The NRG in Fig. 1 consists of two parts; the nets $B_{1}, B_{2}, B_{4}, B_{7}$ and B_{8} are topologically independent of the nets B_{3}, B_{5}, B_{6} and B_{9}.

Table 4
New homogeneous sphere packings derived from uninodal nets.

Initial net	Transformation sequence and resulting space group \dagger	Node degree	Net name	$\begin{aligned} & \mathbf{a}(\AA) \\ & x \end{aligned}$	$\begin{aligned} & \mathbf{b}(\AA) / \beta\left({ }^{\circ}\right) \\ & y \end{aligned}$	$\begin{aligned} & \mathbf{c}(\AA) \\ & z \end{aligned}$
uke	Fddd	3	uke-3-Fddd	5.250	1.731	6.087
				0.3093	0.0842	0.0437
bct	$\begin{aligned} & I 4 / \mathrm{mmm} \rightarrow P 4_{2} / m m c(0,1 / 2,0) \rightarrow P 4_{2} / n n m \\ & \quad(\mathbf{a}-\mathbf{b}, \mathbf{a}+\mathbf{b}, \mathbf{c}, 1 / 2,0,0) \rightarrow \text { Pnnn } \rightarrow \boldsymbol{F d d d}(2 \mathbf{a}, 2 \mathbf{b}, 2 \mathbf{c}) \end{aligned}$	4	bet-4-Fddd	$\begin{aligned} & 3.572 \\ & 0.2589 \end{aligned}$	$\begin{aligned} & 6.097 \\ & 0.3070 \end{aligned}$	$\begin{aligned} & 1.700 \\ & 0.2106 \end{aligned}$
fnl	$I 4_{1} /$ amd \rightarrow Fddd $(\mathbf{a}-\mathbf{b}, \mathbf{a}+\mathbf{b}, \mathbf{c} ; 1 / 4,3 / 4,1 / 4)$	4	fnl-4-Fddd	2.589	3.012	7.292
				0.0173	0.4872	0.0681
acs	$\begin{aligned} & P 6_{3} / m m c \rightarrow P \overline{3} m 1 \rightarrow C 2 / m(-\mathbf{a}+\mathbf{b},-\mathbf{a}-\mathbf{b}, \mathbf{c}) \\ & \quad \rightarrow \boldsymbol{C} 2 / \mathbf{c}(\mathbf{a}, \mathbf{b}, 2 \mathbf{c}) \end{aligned}$	5	acs-5-C2/c	$\begin{aligned} & 2.445 \\ & 0.3438 \end{aligned}$	$\begin{aligned} & 1.600 / 102.6 \\ & 0.3750 \end{aligned}$	$\begin{aligned} & 2.400 \\ & 0.3542 \end{aligned}$
bet	$\begin{aligned} & I 4 / m m m \rightarrow P 4_{2} / m m c(0,1 / 2,0) \rightarrow P 4_{2} / n n m \\ & \quad(\mathbf{a}-\mathbf{b}, \mathbf{a}+\mathbf{b}, \mathbf{c} ; 1 / 2,0,0) \rightarrow \text { Pnnn } \rightarrow \boldsymbol{F d d d}(2 \mathbf{a}, 2 \mathbf{b}, 2 \mathbf{c}) \end{aligned}$	5	bct-5-Fddd-1	$\begin{aligned} & 2.872 \\ & 0.3340 \end{aligned}$	$\begin{aligned} & 5.404 \\ & 0.0344 \end{aligned}$	$\begin{aligned} & 2.353 \\ & 0.0815 \end{aligned}$
bet	$I 4 / \mathrm{mmm} \rightarrow P 4_{2} / \mathrm{mmc}(0,1 / 2,0) \rightarrow P 4_{2} / \mathrm{nnm}$ $(\mathbf{a}-\mathbf{b}, \mathbf{a}+\mathbf{b}, \mathbf{c} ; 1 / 2,0,0) \rightarrow \text { Pnnn } \rightarrow \boldsymbol{F d d d}(2 \mathbf{a}, 2 \mathbf{b}, 2 \mathbf{c})$	5	bet-5-Fddd-2	$\begin{aligned} & 1.595 \\ & 0.2500 \end{aligned}$	$\begin{aligned} & 3.668 \\ & 0.2500 \end{aligned}$	$\begin{aligned} & 6.080 \\ & 0.2996 \end{aligned}$
bsn	$\begin{aligned} & I 4_{1} / a m d \rightarrow \operatorname{Imma} \rightarrow C 2 / m(-\mathbf{a}-\mathbf{c}, \mathbf{b}, \mathbf{a} ; 1 / 4,1 / 4,1 / 4) \\ & \rightarrow \boldsymbol{C} / \boldsymbol{c}(\mathbf{a}, \mathbf{b}, 2 \mathbf{c}) \end{aligned}$	5	bsn-5-C2/c	$\begin{aligned} & 2.061 \\ & 0.4002 \end{aligned}$	$\begin{aligned} & 2.779 / 154.0 \\ & 0.4230 \end{aligned}$	$\begin{aligned} & 3.739 \\ & 0.0690 \end{aligned}$
nce	$\begin{aligned} & I 4 / \mathrm{mmm} \rightarrow \operatorname{Immm} \rightarrow \text { Pnnn }(1 / 4,1 / 4,1 / 4) \\ & \quad \rightarrow \boldsymbol{F d d d}(2 \mathbf{a}, 2 \mathbf{b}, 2 \mathbf{c} ; 1 / 2,0,0) \end{aligned}$	5	nce-5-Fddd-1	$\begin{aligned} & 1.668 \\ & 0.1250 \end{aligned}$	$\begin{aligned} & 3.104 \\ & 0.4639 \end{aligned}$	$\begin{aligned} & 7.524 \\ & 0.0585 \end{aligned}$
nce	$\begin{aligned} & I 4 / \mathrm{mmm} \end{aligned} \rightarrow \operatorname{Immm} \rightarrow \operatorname{Pnnn}(1 / 4,1 / 4,1 / 4)$	5	nce-5-Fddd-2	$\begin{aligned} & 1.785 \\ & 0.3750 \end{aligned}$	$\begin{aligned} & 6.977 \\ & 0.1890 \end{aligned}$	$\begin{aligned} & 2.903 \\ & 0.0473 \end{aligned}$
nce	$\begin{aligned} & I 4 / \mathrm{mmm} \end{aligned} \rightarrow \operatorname{Fmmm}(\mathbf{a}-\mathbf{b}, \mathbf{a}+\mathbf{b}, \mathbf{c}) \rightarrow \text { Cmme }(\mathbf{c}, \mathbf{a}, \mathbf{b} ; 1 / 4,1 / 4,0)$	5	nce-5-Ccce	$\begin{aligned} & 2.265 \\ & 0.3439 \end{aligned}$	$\begin{aligned} & 3.224 \\ & 0.1403 \end{aligned}$	$\begin{aligned} & 2.543 \\ & 0.1110 \end{aligned}$
snp	$P 4_{2} / \mathrm{mmc} \rightarrow \operatorname{Cccm}(\mathbf{a}-\mathbf{b}, \mathbf{a}+\mathbf{b}, \mathbf{c}) \rightarrow \boldsymbol{C} 2 / \boldsymbol{c}$	5	snp-5-C2/c	$\begin{aligned} & 3.002 \\ & 0.3603 \end{aligned}$	$\begin{aligned} & 2.487 / 101.7 \\ & 0.0970 \end{aligned}$	$\begin{aligned} & 1.752 \\ & 0.0383 \end{aligned}$
snw	$\begin{aligned} & I 4_{1} / \text { amd } \rightarrow \text { Fddd }(\mathbf{a}-\mathbf{b}, \mathbf{a}+\mathbf{b}, \mathbf{c} ; 1 / 4,3 / 4,1 / 4) \\ & \quad \rightarrow \boldsymbol{F d d} \mathbf{2}(\mathbf{c}, \mathbf{a}, \mathbf{b} ; 3 / 8,0,3 / 8) \end{aligned}$	5	snw-5-Fdd2	$\begin{aligned} & 2.443 \\ & 0.1787 \end{aligned}$	$\begin{aligned} & 4.684 \\ & 0.0521 \end{aligned}$	$\begin{aligned} & 1.601 \\ & 0.4891 \end{aligned}$
sxb	Cccm \rightarrow Pnnn $(1 / 4,1 / 4,0) \rightarrow \boldsymbol{F d d d}(2 \mathbf{a}, 2 \mathbf{b}, 2 \mathbf{c} ; 1 / 2,0,1 / 2)$	5	sxb-5-Fddd	$\begin{aligned} & 1.787 \\ & 0.3750 \end{aligned}$	$\begin{aligned} & 3.787 \\ & 0.0070 \end{aligned}$	5.367 0.0832
wfl	$I 4_{1} /$ amd \rightarrow Fddd $(\mathbf{a}-\mathbf{b}, \mathbf{a}+\mathbf{b}, \mathbf{c} ; 1 / 4,3 / 4,1 / 4)$	5	wfl-5-Fddd	5.417	2.316	2.903
				0.0340	0.3372	0.0933
wfm	$I 4_{1} /$ amd $\rightarrow \boldsymbol{F d d d}(\mathbf{a}-\mathbf{b}, \mathbf{a}+\mathbf{b}, \mathbf{c} ; 1 / 4,3 / 4,1 / 4)$	5	wfm-5-Fddd	2.809	5.346	2.446
				0.3485	0.0341	0.0771
xfc	$I 4_{1} /$ amd $\rightarrow \boldsymbol{F d d d}(\mathbf{a}-\mathbf{b}, \mathbf{a + b}, \mathbf{c} ; 1 / 4,3 / 4,1 / 4)$	5	$\mathbf{x f c - 5 - F d d d ~}$	5.314	2.741	2.562
				0.0326	0.1593	0.4333
6/4/t7	$I 4 / \mathrm{mmm} \rightarrow$ Fmmm $(\mathbf{a}-\mathbf{b}, \mathbf{a}+\mathbf{b}, \mathbf{c}) \rightarrow \boldsymbol{C c c e}(\mathbf{c}, \mathbf{a}, \mathbf{b} ; 1 / 4,1 / 4,0)$	5	6/4/t7-5-Ccce-1	3.615	1.618	3.097
				0.1329	0.3357	0.0948
6/4/t7	I4/mmm \rightarrow Fmmm $(\mathbf{a}-\mathbf{b}, \mathbf{a}+\mathbf{b}, \mathbf{c}) \rightarrow \operatorname{Cmce}(-\mathbf{b}, \mathbf{a}, \mathbf{c})$	5	6/4/t7-5-Cmce	3.786	3.003	1.640
				0.3679	0.1547	0.1127
bet	$\begin{aligned} & I 4 / m m m \rightarrow P 4_{2} / m m c(0,1 / 2,0) \rightarrow P 4_{2} / n n m \\ & \quad(\mathbf{a}-\mathbf{b}, \mathbf{a}+\mathbf{b}, \mathbf{c} ; 1 / 2,0,0) \rightarrow \text { Pnnn } \rightarrow \boldsymbol{F d d d}(2 \mathbf{a}, 2 \mathbf{b}, 2 \mathbf{c}) \end{aligned}$	6	bet-6-Fddd	$\begin{aligned} & 5.490 \\ & 0.0375 \end{aligned}$	$\begin{aligned} & 2.368 \\ & 0.0662 \end{aligned}$	$\begin{aligned} & 2.770 \\ & 0.2984 \end{aligned}$
eca	$\begin{aligned} & P 6_{3} / m m c \rightarrow P 3 m 1 \rightarrow C 2 / m(-\mathbf{a}+\mathbf{b},-\mathbf{a}-\mathbf{b}, \mathbf{c}) \\ & \rightarrow \boldsymbol{C} 2 / c(\mathbf{a}, \mathbf{b}, 2 \mathbf{c}) \end{aligned}$	6	eca-6-C2/c	$\begin{aligned} & 2.952 \\ & 0.1721 \end{aligned}$	$\begin{aligned} & 1.705 / 100.1 \\ & 0.0863 \end{aligned}$	$\begin{aligned} & 1.911 \\ & 0.2970 \end{aligned}$
ecl	I4/mmm $\rightarrow \operatorname{Fmmm}(\mathbf{a}-\mathbf{b}, \mathbf{a + b}, \mathbf{c}) \rightarrow \boldsymbol{C c c m}(\mathbf{c}, \mathbf{a}, \mathbf{b} ; 1 / 4,0,1 / 4)$	6	ecl-6-Cccm	3.860	1.000	3.970
				0.3724	0.0893	0.3740
ecu	$\mathrm{Cmcm} \rightarrow \operatorname{Pbcm}(1 / 4,1 / 4,0) \rightarrow \boldsymbol{P b c n}(\mathbf{c}, 2 \mathbf{a}, \mathbf{b})$	6	ecu-6-Pbcn	1.634	1.826	2.920
				0.3750	0.2999	0.4063
ecu	$\mathrm{Cmcm} \rightarrow P 2_{1} / m(1 / 2 \mathbf{a}+1 / 2 \mathbf{b}, \mathbf{c}, 1 / 2 \mathbf{a}-1 / 2 \mathbf{b}) \rightarrow \boldsymbol{P} \mathbf{2}_{1} / \mathbf{c}(\mathbf{a}, \mathbf{b}, 2 \mathbf{c})$	6	ecu-6-P2 ${ }_{1} / c$	1.632	1.634 / 146.3	2.945
				0.4385	0.3752	0.1255
hex	P6 $/ \mathrm{mmm} \rightarrow \operatorname{Cmmm}(-\mathbf{a}+\mathbf{b},-\mathbf{a}-\mathbf{b}, \mathbf{c}) \rightarrow \operatorname{Pban}(1 / 4,1 / 4,0) \rightarrow$ Pnnn (a, b, 2c; 0, 0, 1/2) $\rightarrow \boldsymbol{F d d d}(2 \mathbf{a}, 2 \mathbf{b}, 2 \mathbf{c} ; 1 / 2,0,0)$	6	hex-6-Fddd	$\begin{aligned} & 2.369 \\ & 0.0817 \end{aligned}$	$\begin{aligned} & 3.916 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 3.223 \\ & 0.3437 \end{aligned}$
hex	$P 6 / \mathrm{mmm} \rightarrow \operatorname{Cmmm}(-\mathbf{a}+\mathbf{b},-\mathbf{a}-\mathbf{b}, \mathbf{c}) \rightarrow \operatorname{Pmma}(\mathbf{a},-\mathbf{c}, \mathbf{b}$; $1 / 4,1 / 4,0) \rightarrow P 222_{1}(\mathbf{b}, \mathbf{c}, \mathbf{a}) \rightarrow \boldsymbol{C 2 2 2}(2 \mathbf{a}, 2 \mathbf{b}, \mathbf{c})$	6	hex-6-C222 ${ }_{1}$	$\begin{aligned} & 1.823 \\ & 0.1842 \end{aligned}$	$\begin{aligned} & 2.739 \\ & 0.3196 \end{aligned}$	$\begin{aligned} & 1.786 \\ & 0.4574 \end{aligned}$
hex	P6/mmm $\rightarrow \operatorname{Cmmm}(-\mathbf{a}+\mathbf{b},-\mathbf{a}-\mathbf{b}, \mathbf{c}) \rightarrow \operatorname{Pmma}(\mathbf{a},-\mathbf{c}, \mathbf{b} ;$ $1 / 4,1 / 4,0) \rightarrow$ Cmce $(2 \mathbf{b}, 2 \mathbf{c}, \mathbf{a}) \rightarrow \boldsymbol{C} 2 / \boldsymbol{m}(-\mathbf{b}, \mathbf{a}, \mathbf{c})$	6	hex-6-C2/m	$\begin{aligned} & 1.860 \\ & 0.3054 \end{aligned}$	$\begin{aligned} & 2.736 / 102.4 \\ & 0.3172 \end{aligned}$	$\begin{aligned} & 1.816 \\ & 0.2622 \end{aligned}$
nce	$\begin{aligned} & \text { I4/mmm } \rightarrow \text { Immm } \rightarrow \text { Pnnn }(1 / 4,1 / 4,1 / 4) \rightarrow \boldsymbol{F d d d}(2 \mathbf{a}, 2 \mathbf{b}, 2 \mathbf{c} ; \\ & 1 / 2,0,0) \end{aligned}$	6	nce-6-Fddd	$\begin{aligned} & 5.589 \\ & 0.2914 \end{aligned}$	$\begin{aligned} & 2.355 \\ & 0.1766 \end{aligned}$	$\begin{aligned} & 2.651 \\ & 0.3079 \end{aligned}$
nce	$\begin{aligned} & I 4 / m m m \rightarrow \operatorname{Fmmm}(\mathbf{a}-\mathbf{b}, \mathbf{a}+\mathbf{b}, \mathbf{c}) \rightarrow \text { Cmme }(\mathbf{c}, \mathbf{a}, \mathbf{b} ; 1 / 4,1 / 4,0) \\ & \rightarrow \text { Ibca }(\mathbf{a}, \mathbf{b}, 2 \mathbf{c}) \end{aligned}$	6	nce-6-Ibca	$\begin{aligned} & 2.752 \\ & 0.4206 \end{aligned}$	$\begin{aligned} & 3.462 \\ & 0.1201 \end{aligned}$	$\begin{aligned} & 1.799 \\ & 0.0955 \end{aligned}$
nce	$\begin{aligned} & I 4 / \mathrm{mmm} \end{aligned} \rightarrow \operatorname{Fmmm}(\mathbf{a}-\mathbf{b}, \mathbf{a}+\mathbf{b}, \mathbf{c}) \rightarrow \text { Cmme }(\mathbf{c}, \mathbf{a}, \mathbf{b} ; 1 / 4,1 / 4,0)$	6	nce-6-Ccce	$\begin{aligned} & 3.546 \\ & 0.1160 \end{aligned}$	$\begin{aligned} & 1.760 \\ & 0.0886 \end{aligned}$	2.596 0.0915
nce	$\xrightarrow{I 4 / \mathrm{mmm}} \rightarrow \text { Fmmm }(\mathbf{a}-\mathbf{b}, \mathbf{a}+\mathbf{b}, \mathbf{c}) \rightarrow \text { Cmme }(\mathbf{c}, \mathbf{a}, \mathbf{b} ; 1 / 4,1 / 4,0)$	6	nce-6-Cmce	$\begin{aligned} & 2.737 \\ & 0.1827 \end{aligned}$	$\begin{aligned} & 1.859 \\ & 0.3553 \end{aligned}$	$\begin{aligned} & 3.545 \\ & 0.1189 \end{aligned}$
nce	$\begin{aligned} & I 4 / \mathrm{mmm} \end{aligned} \rightarrow \operatorname{Fmmm}(\mathbf{a}-\mathbf{b}, \mathbf{a}+\mathbf{b}, \mathbf{c}) \rightarrow \text { Cmme }(\mathbf{c}, \mathbf{a}, \mathbf{b} ; 1 / 4,1 / 4,0)$	6	nce-6-Ibam	$\begin{aligned} & 2.527 \\ & 0.1647 \end{aligned}$	$\begin{aligned} & 1.805 \\ & 0.1535 \end{aligned}$	$\begin{aligned} & 3.665 \\ & 0.3636 \end{aligned}$
nce	I4/mmm \rightarrow Fmmm $(\mathbf{a}-\mathbf{b}, \mathbf{a}+\mathbf{b}, \mathbf{c}) \rightarrow$ Cmсe $(\mathbf{a},-\mathbf{c}, \mathbf{b}) \rightarrow \boldsymbol{C} 2 / \mathbf{c}$ $(1 / 4,1 / 4,0)$	6	nce-6-C2/c	$\begin{aligned} & 1.794 \\ & 0.2279 \end{aligned}$	$\begin{aligned} & 2.897 / 100.2 \\ & 0.0930 \end{aligned}$	$\begin{aligned} & 1.685 \\ & 0.1169 \end{aligned}$
nci	```Fmmm }->\mathrm{ Cmme (c, a, b; 1/4, 1/4, 0) }->\mathrm{ Ccce (a, b, 2c; 1/4,1/4,0)```	6	nci-6-Ccce	$\begin{aligned} & 3.554 \\ & 0.1188 \end{aligned}$	$\begin{aligned} & 2.410 \\ & 0.0749 \end{aligned}$	$\begin{aligned} & 1.865 \\ & 0.1063 \end{aligned}$
ose	$\operatorname{Immm} \rightarrow$ Pmmn (1/4, 1/4, 1/4) \rightarrow Pccn (a, b, 2c)	6	ose-6-Pccn-1	1.000	2.835	3.196
				0.3749	0.5792	0.1342
ose	$\operatorname{Immm} \rightarrow \operatorname{Pmmn}(\mathbf{c}, \mathbf{a}, \mathbf{b} ; 1 / 4,1 / 4,1 / 4) \rightarrow \boldsymbol{P c c n}(\mathbf{a}, \mathbf{b}, 2 \mathbf{c})$	6	ose-6-Pccn-2	2.841	1.671	1.949
				0.5785	0.3170	0.1677

Table 4 (continued)

Initial net	Transformation sequence and resulting space group \dagger	Node degree	Net name	$\begin{aligned} & \mathbf{a}(\AA) \\ & x \end{aligned}$	$\begin{aligned} & \mathbf{b}(\AA) / \beta\left({ }^{\circ}\right) \\ & y \end{aligned}$	$\begin{aligned} & \mathbf{c}(\AA) \\ & z \end{aligned}$
ose	$\mathrm{Immm} \rightarrow C 2 / m(-\mathbf{b}+\mathbf{c}, \mathbf{a}, \mathbf{b}) \rightarrow \boldsymbol{C} 2 / \boldsymbol{c}(\mathbf{a}, \mathbf{b}, 2 \mathbf{c})$	6	ose-6-C2/c-1	1.826	2.724 / 127.0	2.244
				0.0329	0.3188	0.0444
ose	$\operatorname{Immm} \rightarrow C 2 / m(-\mathbf{b}+\mathbf{c}, \mathbf{a}, \mathbf{b}) \rightarrow \boldsymbol{C} \mathbf{2} / \boldsymbol{c}(\mathbf{a}, \mathbf{b}, 2 \mathbf{c})$	6	ose-6-C2/c-2	2.119	2.838 / 127.9	1.951
				0.5658	0.1719	0.0439
ose	$\mathrm{Immm} \rightarrow C 2 / m(-\mathbf{a}-\mathbf{b}, \mathbf{c}, \mathbf{b}) \rightarrow \boldsymbol{C 2} / \mathbf{c}(\mathbf{a}, \mathbf{b}, 2 \mathbf{c})$	6	ose-6-C2/c-3	3.130	1.668 / 114.6	1.950
				0.1713	0.0668	0.6147
svf	I4/mcm \rightarrow Ibam \rightarrow Pbcn ($-\mathbf{b}, \mathbf{a}$, c)	6	svf-6-Pbcn	2.408	2.367	1.449
				0.3497	0.1456	0.0119
svf	I4/mcm \rightarrow Ibam \rightarrow C2/c $(\mathbf{a}-\mathbf{c}, \mathbf{b}, \mathbf{c})$	6	svf-6-C2/c	2.849	2.364 / 122.1	1.448
				0.3502	0.3541	0.3548
svg	$I 4 / \mathrm{mmm} \rightarrow \operatorname{Fmmm}(\mathbf{a}-\mathbf{b}, \mathbf{a}+\mathbf{b}, \mathbf{c}) \rightarrow \boldsymbol{C c c e}(\mathbf{c}, \mathbf{b},-\mathbf{a} ; 1 / 4,1 / 4,0)$	6	svg-6-Ccce	1.669	3.545	3.046
				0.0704	0.1129	0.0905
svg	I4/mmm \rightarrow Fmmm $(\mathbf{a}-\mathbf{b}, \mathbf{a}+\mathbf{b}, \mathbf{c}) \rightarrow$ Cmce $(-\mathbf{b}, \mathbf{a}, \mathbf{c})$	6	svg-6-Cmce	3.623	2.958	1.712
				0.3620	0.1626	0.0794
svg	$I 4 / \mathrm{mmm} \rightarrow \operatorname{Fmmm}(\mathbf{a}-\mathbf{b}, \mathbf{a + b}, \mathbf{c}) \rightarrow \boldsymbol{C m c m}(\mathbf{b}, \mathbf{c}, \mathbf{a} ; 1 / 4,0,1 / 4)$	6	$\mathbf{s v g}-6-\mathrm{Cmcm}$	2.907	1.782	3.656
				0.3280	0.3426	0.1132
wfm	$I 4_{1} /$ amd $\rightarrow \boldsymbol{F d d d}(\mathbf{a}-\mathbf{b}, \mathbf{a}+\mathbf{b}, \mathbf{c} ; 1 / 4,3 / 4,1 / 4)$	6	wfm-6-Fddd	3.880	3.068	2.566
				0.0020	0.3470	0.0670
bet	$\begin{aligned} & I 4 / m m m \rightarrow \operatorname{Fmmm}(\mathbf{a}-\mathbf{b}, \mathbf{a}+\mathbf{b}, \mathbf{c}) \rightarrow \text { Cmme }(\mathbf{b}, \mathbf{c}, \mathbf{a} ; 1 / 4,0,1 / 4) \\ & \rightarrow \operatorname{Ibam}(\mathbf{b}, 2 \mathbf{c}, \mathbf{a}) \end{aligned}$	7	bct-7-Ibam	1.833	2.476	1.676
				0.3512	0.1692	0.0000
bet	I4/mmm \rightarrow Fmmm (a-b, a+b, c) \rightarrow Cmme $(0,1 / 4,1 / 4) \rightarrow$ $\operatorname{Ibam}(\mathbf{b}, 2 \mathbf{c}, \mathbf{a}) \rightarrow \boldsymbol{C} \mathbf{2} / \boldsymbol{c}(-\mathbf{b}-\mathbf{c}, \mathbf{a}, \mathbf{c})$	7	bet-7-C2/c	3.106	1.666 / 142.0	2.673
				0.1609	0.1697	0.2499
eca	$\begin{aligned} & P 6_{3} / m m c \rightarrow P \overline{3} m 1 \rightarrow C 2 / m(-\mathbf{a}+\mathbf{b},-\mathbf{a}-\mathbf{b}, \mathbf{c}) \rightarrow \boldsymbol{C} 2 / c \\ & \quad(\mathbf{a}, \mathbf{b}, 2 \mathbf{c}) \end{aligned}$	7	eca-7-C2/c	2.694	1.667 / 99.9	1.927
				0.3390	0.4194	0.3459
ecl	$I 4 / \mathrm{mmm} \rightarrow \operatorname{Fmmm}(\mathbf{a}-\mathbf{b}, \mathbf{a}+\mathbf{b}, \mathbf{c}) \rightarrow \boldsymbol{C c c e}(\mathbf{c}, \mathbf{b},-\mathbf{a} ; 1 / 4,1 / 4,0)$	7	ecl-7-Ccce	3.859	1.000	3.703
				0.1277	0.3351	0.1169
ecl	I4/mmm \rightarrow Fmmm $(\mathbf{a}-\mathbf{b}, \mathbf{a}+\mathbf{b}, \mathbf{c}) \rightarrow$ Cmce $(-\mathbf{b}, \mathbf{a}, \mathbf{c})$	7	ecl-7-Cmce	3.932	3.673	1.000
				0.3729	0.1321	0.1210
ecu	$\mathrm{Cmcm} \rightarrow \operatorname{Pbcm}(1 / 4,1 / 4,0) \rightarrow \boldsymbol{P b c a}(2 \mathbf{a}, \mathbf{b}, \mathbf{c})$	7	ecu-7-Pbca	1.941	2.697	1.393
				0.3383	0.3831	0.1637
ecu	$\mathrm{Cmcm} \rightarrow \mathrm{C} 2 / \mathrm{m}(-\mathbf{b}, \mathbf{a}, \mathbf{c}) \rightarrow \boldsymbol{C 2} / \mathbf{c}(\mathbf{a}, \mathbf{b}, 2 \mathbf{c})$	7	ecu-7-C2/c	2.687	1.000 / 93.9	2.690
				0.1341	0.1232	0.1299
ecu	$\mathrm{Cmcm} \rightarrow \mathrm{C} 2 / \mathrm{c} \rightarrow \boldsymbol{P 2}_{1} / \boldsymbol{c}(1 / 4,1 / 4,0)$	7	ecu-7-P21/c	1.000	2.697 / 103.8	1.392
				0.1770	0.1169	0.2804
ele	$F d d 2$	7	ele-7-Fdd2	2.691	5.358	1.000
				0.1077	0.3100	0.0404
fcu	$F m \overline{3} \mathrm{~m} \rightarrow$ I4/mmm $(1 / 2 \mathbf{a}-1 / 2 \mathbf{b}, 1 / 2 \mathbf{a}+1 / 2 \mathbf{b}, \mathbf{c}) \rightarrow P 4_{2} / \mathrm{nnm}$ $(1 / 4,3 / 4,1 / 4) \rightarrow I 4_{1} /$ amd $(\mathbf{a}-\mathbf{b}, \mathbf{a}+\mathbf{b}, 2 \mathbf{c} ; 0,1 / 2,0) \rightarrow$ Fddd $(\mathbf{a}-\mathbf{b}, \mathbf{a}+\mathbf{b}, \mathbf{c} ; 1 / 4,3 / 4,1 / 4) \rightarrow \boldsymbol{F d d} 2(\mathbf{b}, \mathbf{c}, \mathbf{a} ; 0,3 / 8,3 / 8)$	7	fcu-7-Fdd2	2.850	3.519	1.646
				0.0833	0.2058	0.1931
hex	P6/mmm \rightarrow Cmmm $(-\mathbf{a}+\mathbf{b},-\mathbf{a}-\mathbf{b}, \mathbf{c}) \rightarrow \operatorname{Ibam}(\mathbf{a}, \mathbf{b}, 2 \mathbf{c}) \rightarrow$ $\operatorname{Pbcm}(-\mathbf{b}, \mathbf{a}, \mathbf{c} ; 1 / 4,1 / 4,1 / 4) \rightarrow \operatorname{Pbca}(2 \mathbf{a}, \mathbf{b}, \mathbf{c}) \rightarrow$ Cmce \ddagger	7	hex-7-Cmce-1	1.968	1.968	1.882
				0.0000	0.1639	0.2970
hex	P6/mmm \rightarrow Cmmm $(-\mathbf{a}+\mathbf{b},-\mathbf{a}-\mathbf{b}, \mathbf{c}) \rightarrow \operatorname{Pmma}(\mathbf{b}, \mathbf{c}, \mathbf{a}$; $1 / 4,1 / 4,0) \rightarrow \operatorname{Pbcm}(\mathbf{b}, 2 \mathbf{c}, \mathbf{a}) \rightarrow \operatorname{Pbcn}(\mathbf{c}, 2 \mathbf{a}, \mathbf{b}) \rightarrow \boldsymbol{C m c e} \ddagger$	7	hex-7-Cmce-2	1.967	3.627	1.000
				0.0000	0.3694	0.3398
hex	$\begin{aligned} & P 6 / \mathrm{mmm} \rightarrow \operatorname{Cmmm}(-\mathbf{a}+\mathbf{b},-\mathbf{a}-\mathbf{b}, \mathbf{c}) \rightarrow \operatorname{Imma}(\mathbf{a},-2 \mathbf{c}, \mathbf{b}) \rightarrow \\ & \quad C 2 / m(-\mathbf{b}-\mathbf{c}, \mathbf{a}, \mathbf{c}) \rightarrow \boldsymbol{C 2} / \mathrm{c}(\mathbf{a}, \mathbf{b}, 2 \mathbf{c}) \end{aligned}$	7	hex-7-C2/c	2.202	1.872 / 116.7	1.973
				0.2483	0.0436	0.1600
nce	I4/mmm \rightarrow Fmmm $(\mathbf{a}-\mathbf{b}, \mathbf{a}+\mathbf{b}, \mathbf{c}) \rightarrow$ Cmce $(\mathbf{a},-\mathbf{c}, \mathbf{b})$	7	nce-7-Cmce	1.646	2.850	1.760
				0.0000	0.3333	0.4114
nce	$\begin{aligned} & I 4 / m m m \rightarrow \text { Fmmm }(\mathbf{a}-\mathbf{b}, \mathbf{a}+\mathbf{b}, \mathbf{c}) \rightarrow \text { Cmce }(\mathbf{a},-\mathbf{c}, \mathbf{b}) \rightarrow \boldsymbol{C} 2 / \mathbf{c} \\ & (1 / 4,1 / 4,0) \end{aligned}$	7	nce-7-C2/c	1.782	3.317 / 108.0	1.414
				0.2086	0.1066	0.0811
nci	$\begin{aligned} & \text { Fmmm } \rightarrow \text { Cmme }(\mathbf{c}, \mathbf{a}, \mathbf{b}, 1 / 4,1 / 4,0) \rightarrow \text { Ccce }(\mathbf{a}, \mathbf{b}, 2 \mathbf{c} \text {; } \\ & 1 / 4,1 / 4,0) \end{aligned}$	7	nci-7-Ccce	1.911	3.808	1.950
				0.1917	0.3720	0.0755
nci	Fmmm \rightarrow Cmme ($\mathbf{c}, \mathbf{a}, \mathbf{b} ; 1 / 4,1 / 4,0) \rightarrow$ Cmce $(\mathbf{a}, \mathbf{b}, 2 \mathbf{c})$	7	nci-7-Cmce	3.955	1.955	1.904
				0.1264	0.3282	0.3055
nci	Fmmm \rightarrow Cmme (c, a, b; 1/4, 1/4, 0) $\rightarrow \boldsymbol{C 2} / \boldsymbol{m}(-\mathbf{b}, \mathbf{a}, \mathbf{c})$	7	nci-7-C2/m	1.955	3.955 / 107.8	1.000
				0.2673	0.1264	0.1107
tsi	$\begin{aligned} & I 4_{1} / \text { amd } \rightarrow \text { Imma } \rightarrow C 2 / m(-\mathbf{a}-\mathbf{c}, \mathbf{b}, \mathbf{a} ; 1 / 4,1 / 4,1 / 4) \rightarrow \boldsymbol{C} 2 / \boldsymbol{c} \\ & \quad(\mathbf{a}, \mathbf{b}, 2 \mathbf{c}) \end{aligned}$	7	tsi-7-C2/c	3.733	1.000 / 104.9	1.973
				0.3805	0.4183	0.0634
tsi	$\begin{aligned} & I 4_{1} \text { /amd } \rightarrow \text { Fddd }(\mathbf{a}-\mathbf{b}, \mathbf{a}+\mathbf{b}, \mathbf{c} ; 1 / 4,3 / 4,1 / 4) \rightarrow C 2 / c \\ & \quad(-\mathbf{c}, \mathbf{b}, 1 / 2 \mathbf{a}+1 / 2 \mathbf{c}) \rightarrow \boldsymbol{P} \mathbf{2}_{\mathbf{1}} / \boldsymbol{c}(1 / 4,1 / 4,0) \end{aligned}$	7	tsi-7-P2 ${ }_{1} / c$	1.392	1.393 / 104.4	1.942
				0.2662	0.3359	0.2968
bet	$\begin{aligned} & I 4 / m m m \rightarrow \operatorname{Immm} \rightarrow \text { Pmmn }(1 / 4,1 / 4,1 / 4) \\ & \rightarrow \text { Pnma }(2 \mathbf{c}, \mathbf{b},-\mathbf{a}) \end{aligned}$	8	bet-8-Pnma	1.871	1.309	1.414
				0.1785	0.2500	0.1252
bet	$I 4 / \mathrm{mmm} \rightarrow$ Fmmm $(\mathbf{a}-\mathbf{b}, \mathbf{a}+\mathbf{b}, \mathbf{c}) \rightarrow$ Cmme $(0,1 / 4,1 / 4) \rightarrow$ $\operatorname{Pcca}(\mathbf{b}, \mathbf{c}, \mathbf{a} ; 1 / 4,1 / 4,0) \rightarrow \boldsymbol{P b c n}(2 \mathbf{b}, \mathbf{c}, \mathbf{a})$	8	bet-8-Pbcn	1.914	1.912	1.856
				0.1732	0.3098	0.0483
bet	I4/mmm \rightarrow Fmmm ($\mathbf{a}-\mathbf{b}, \mathbf{a}+\mathbf{b}, \mathbf{c}) \rightarrow$ Cmme $(0,1 / 4,1 / 4) \rightarrow$ $\operatorname{Ibam}(\mathbf{b}, 2 \mathbf{c}, \mathbf{a}) \rightarrow \boldsymbol{C} \mathbf{2} / \mathbf{c}(-\mathbf{b}-\mathbf{c}, \mathbf{a}, \mathbf{c})$	8	bct-8-C2/c-1	2.429	1.912 / 128.0	1.856
				0.1734	0.1900	0.1882
bct	$I 4 / \mathrm{mmm} \rightarrow \operatorname{Fmmm}(\mathbf{a}-\mathbf{b}, \mathbf{a}+\mathbf{b}, \mathbf{c}) \rightarrow \operatorname{Cmcm}(-\mathbf{b}, \mathbf{a}, \mathbf{c}$; $1 / 4,0,1 / 4) \rightarrow C 2 / m(-\mathbf{b}, \mathbf{a}, \mathbf{c}) \rightarrow \boldsymbol{C 2} / \mathbf{c}(\mathbf{a}, \mathbf{b}, 2 \mathbf{c})$	8	bct-8-C2/c-2	1.920	1.921 / 104.9	1.937
				0.2307	0.4352	0.1756
chb	$\mathrm{Cmcm} \rightarrow \operatorname{Pbcm}(1 / 4,1 / 4,0) \rightarrow \boldsymbol{P b c n}(\mathbf{c}, 2 \mathbf{a}, \mathbf{b})$	8	chb-8-Pbcn	1.000	1.937	3.486
				0.3750	0.3500	0.3889
chb	$\mathrm{Cmcm} \rightarrow C 2 / m(-\mathbf{b}, \mathbf{a}, \mathbf{c}) \rightarrow \boldsymbol{C 2} / \mathbf{c}(\mathbf{a}, \mathbf{b}, 2 \mathbf{c})$	8	chb-8-C2/c	3.605	1.000 / 103.9	1.980
				0.3571	0.4291	0.1874

Table 4 (continued)

Initial net	Transformation sequence and resulting space group \dagger	Node degree	Net name	$\begin{aligned} & \mathbf{a}(\AA \mathrm{A}) \\ & x \end{aligned}$	$\begin{aligned} & \mathbf{b}(\AA) / \beta\left({ }^{\circ}\right) \\ & y \end{aligned}$	$\begin{aligned} & \mathbf{c}(\AA) \\ & z \end{aligned}$
feb	Pnma $\rightarrow \boldsymbol{P}_{\mathbf{1}} / \mathbf{c}$ (b, c, a)	8	feb-8-P2 $2_{1} \boldsymbol{c}$	1.000	1.837 / 105.1	1.903
				0.1673	0.1663	0.3329
nce	I4/mmm \rightarrow Immm \rightarrow C2/m $(-\mathbf{a}-\mathbf{c}, \mathbf{b}, \mathbf{a}) \rightarrow \boldsymbol{C} 2 / \boldsymbol{c}(\mathbf{a}, \mathbf{b}, 2 \mathbf{c})$	8	nce-8-C2/c	3.633	1.000 / 107.4	1.990
				0.1435	0.0504	0.5784
nci	$F m m m \rightarrow \operatorname{Cccm}(\mathbf{c}, \mathbf{a}, \mathbf{b} ; 1 / 4,0,1 / 4) \rightarrow \boldsymbol{C} 2 / \mathbf{c}(-\mathbf{b}, \mathbf{a}, \mathbf{c})$	8	nci-8-C2/c	1.902	3.688 / 102.0	1.000
				0.2673	0.1174	0.4080
svi-x	I4/mcm \rightarrow Ibam \rightarrow Pbcn ($-\mathbf{b}, \mathbf{a}, \mathbf{c}$)	8	svi-x-8-Pbcn	2.443	1.814	1.669
				0.3362	0.1520	0.0704
svi-x	I4/mcm \rightarrow Ibam $\rightarrow \boldsymbol{C} \mathbf{2} / \mathbf{c}(\mathbf{a}-\mathbf{c}, \mathbf{b}, \mathbf{c})$	8	svi-x-8-C2/c	3.248	1.813 / 131.1	1.668
				0.3364	0.3478	0.3607
tcd	$\begin{aligned} & R \overline{3} m \rightarrow C 2 / m(-1 / 3 \mathbf{a}+1 / 3 \mathbf{b}-2 / 3 \mathbf{c},-\mathbf{a}-\mathbf{b}, \mathbf{c}) \\ & \quad \rightarrow \boldsymbol{P}_{1} / \boldsymbol{c}(\mathbf{c}, \mathbf{b},-\mathbf{a}) \end{aligned}$	8	tcd-8-P2 $1_{1} / c$	1.838	1.000 / 149.0	3.571
				0.3888	0.1247	0.0833
bet	$\begin{aligned} I 4 / m m m & \operatorname{Fmmm}(\mathbf{m}-\mathbf{b}, \mathbf{a}+\mathbf{b}, \mathbf{c}) \end{aligned} \rightarrow C 2 / m(\mathbf{a}, \mathbf{b},-1 / 2 \mathbf{a}+1 / 2 \mathbf{c}) .$	9	bet- $9-P 2{ }_{1} / \boldsymbol{c}$	1.000	1.911 / 150.8	3.435
				0.1976	0.1918	0.1745
cco	$\mathrm{Cmcm} \rightarrow \mathrm{C} 2 / \mathrm{m}(-\mathbf{b}, \mathbf{a}, \mathbf{c}) \rightarrow \boldsymbol{C} / / \mathbf{c}(\mathbf{a}, \mathbf{b}, 2 \mathbf{c})$	9	cco-9-C2/c	1.518	1.303 / 99.8	3.284
				0.1744	0.3754	0.1338
chb	$\mathrm{Cmcm} \rightarrow \operatorname{Pbcm}(1 / 4,1 / 4,0) \rightarrow \boldsymbol{P b c a}(2 \mathbf{a}, \mathbf{b}, \mathbf{c})$	9	chb-9-Pbca	1.977	3.236	1.000
				0.3586	0.3838	0.1742
chb	$\mathrm{Cmcm} \rightarrow C 2 / \mathrm{m}(-\mathbf{b}, \mathbf{a}, \mathbf{c}) \rightarrow \boldsymbol{C 2 / c}(\mathbf{a}, \mathbf{b}, 2 \mathbf{c})$	9	chb-9-C2/c-1	3.225	$1.000 / 92.3$	1.982
				0.1340	0.0665	0.1318
chb	$\mathrm{Cmcm} \rightarrow \mathrm{C} 2 / \mathrm{m}(-\mathbf{b}, \mathbf{a}, \mathbf{c}) \rightarrow \boldsymbol{C 2} / \mathbf{c}(\mathbf{a}-2 \mathbf{c}, \mathbf{b}, 2 \mathbf{c})$	9	chb- $9-C 2 / c-2$	3.836	1.000 / 122.9	1.982
				0.1340	0.0675	0.5180
elb	Cmee	9	elb-9-Cmce	1.192	1.606	3.171
				0.0000	0.1939	0.3766
fcu	$F m \overline{3} m \rightarrow I 4 / \mathrm{mmm}(1 / 2 \mathbf{a}-1 / 2 \mathbf{b}, 1 / 2 \mathbf{a}+1 / 2 \mathbf{b}, \mathbf{c}) \rightarrow$ Immm \rightarrow $\operatorname{Pmmn}(\mathbf{b}, \mathbf{c}, \mathbf{a} ; 1 / 4,1 / 4,1 / 4) \rightarrow P 2 / c(\mathbf{a}, \mathbf{c},-\mathbf{a}-\mathbf{b}) \rightarrow \boldsymbol{P} \mathbf{2}_{1} / \boldsymbol{c}$ (a, 2b, c)	9	fcu-9-P2 1_{1} c	1.000	1.930 / 106.9	1.711
				0.1371	0.1158	0.2733
gpu	$F d d d \rightarrow C 2 / c(-\mathbf{b}, \mathbf{a}, 1 / 2 \mathbf{b}+1 / 2 \mathbf{c}) \rightarrow \boldsymbol{P} \mathbf{2}_{1} / \mathbf{c}(1 / 4,1 / 4,0)$	9	gpu-9-P2 ${ }_{1} / c$	1.674	1.000 / 104.9	1.977
				0.2676	0.3259	0.3079
hcp	$\begin{aligned} & P 6_{3} / m m c \rightarrow \operatorname{Cmcm}(-\mathbf{a}-\mathbf{b}, \mathbf{a}-\mathbf{b}, \mathbf{c}) \rightarrow \operatorname{Pbcm}(1 / 4,1 / 4,0) \rightarrow \\ & \quad \text { Pbca }(2 \mathbf{a}, \mathbf{b}, \mathbf{c}) \end{aligned}$	9	hcp-9-Pbca	1.913	1.930	1.711
				0.1814	0.1158	0.1650

\dagger See footnote to Table 1. Refined unit-cell dimensions and node positions are obtained with Gavrog Systre. \ddagger Final space group is obtained with Gavrog Systre

3. Analysis of relations between uninodal threedimensional periodic nets

Below, this approach is applied to 924 4-12-coordinated uninodal three-dimensional periodic nets taken from RCSR (release of November 2006) and all published lists of sphere packings of orthorhombic, trigonal, tetragonal, hexagonal and cubic crystal systems (Table 2). Only single (non-interpenetrating) nets were taken as initial $\left(A_{i}\right)$ supernets, however, interpenetrating arrays may appear as subnets $\left(B_{i}\right)$. The nets with a larger node degree were omitted because they are a priori not sphere packings and are related to well known topologically simpler nets, as a rule. Thus, there are merely two such uninodal nets in RCSR, with node degrees 14 (bcu-x) and 16 (dia-x), and they are extended from an 8 -coordinated bcu ($8 / 4 / c 1$) and a 4 -coordinated dia ($4 / 6 / c 1$) sphere packing, respectively, by uniting the first two coordination shells of nodes. With the program package TOPOS, all the supernetsubnet relations are found and only uninodal three-dimensional periodic subnets are considered. Obviously, 3-coordinated nets should not be taken as initial supernets A_{i} because their uninodal subnet is not three-periodic, however, the 3-coordinated nets may appear as subnets of the nets with a higher node degree (Table 2). In this connection, it should be noted that all 57 3-coordinated RCSR nets and sphere packings are included in the NRG as subnets of the initial

4-12-coordinated nets. As a result, the total NRG consists of 6528 topologically different 3-12-coordinated nets B_{i}.

3.1. New uninodal nets

The first important result is that many of the generated subnets have novel topologies not described in the databases on periodic nets RCSR and EPINET ${ }^{5}$ or in the lists of sphere packings (Table 2). Moreover, the number of novel topologies (5278; six of them are found only in interpenetrating arrays of several equivalent nets) ${ }^{6}$ is much larger than the number of initial nets. It is interesting that none of the new uninodal nets is edge-transitive. Note that the greatest project on enumeration of periodic nets, EPINET, has currently given only 215 3-12-coordinated uninodal nets (Hyde et al., 2006), 117 of which are not collected in RCSR or in the lists of sphere packings. It is important that, unlike the algorithm used in this study, the EPINET nets are obtained from abstract twodimensional hyperbolic tilings and can be considered as a 'random' set of periodic nets, whose topology is independent of any physical properties of substance. In this relation, it should be mentioned that only 27 out of the 117 novel

[^3]uninodal EPINET nets are found among the generated subnets (Table 3). This confirms once again the fact that Nature prefers some nets and avoids other ones.

Since many initial supernets closely relate to real crystal structures, one may expect that their subnets could also be crystallochemically 'significant'. In this respect, it is note-

Figure 2
The main steps in generating an hxg-d-5-Fddd net from the hxg-d net. (a) Obtaining a 7-coordinated Pcca net; (b) obtaining a 5-coordinated $C 2 / c$ net from the 7-coordinated Pcca net symmetrized up to Cmmm; (c) final 5 -coordinated net symmetrized up to Fddd. The edges to be broken are dotted.
worthy that many of them correspond to the sphere packings not described earlier. Thus, the 3-coordinated subnet derived from the net uke by removing one independent edge is a sphere packing (O'Keeffe, 2006) not presented in the list of 3 -coordinated sphere packings by Koch \& Fischer (1995). In Table 4, 85 nets corresponding to new homogeneous (with one kind of sphere) sphere packings are given. Below we will apply the symbol $\mathbf{s}-d-G-n$ for the new nets, where \mathbf{s} coincides with a conventional name of the initial net, d is an integer equal to the degree of a node in the new net, G is the space group for the most symmetrical embedding of the new net, n (optional) is the ordinal number if there are several non-isomorphic nets with a given $\mathbf{s}-d-G$ set.

Examples. The last two nets in Table 5 are good examples to illustrate the algorithm of generating new nets. The symbol of the first of these nets, hxg-d-5-Fddd, means that it is derived from the 10 -coordinated hxg-d net, is 5-coordinated, and its highest symmetry is $F d d d$. It is obtained in six steps: (i) decreasing the hxg-d symmetry by successive group-subgroup transformations, $P n \overline{3} m \rightarrow P 4_{2} / n n m(0,1 / 2,0) \rightarrow$ Cmme $(\mathbf{a}-\mathbf{b}, \mathbf{a}+\mathbf{b}, \mathbf{c} ; 0,1 / 2,0) \rightarrow \operatorname{Pccm}(\mathbf{b}, \mathbf{c}, \mathbf{a}) \rightarrow \operatorname{Pcca}(2 \mathbf{a}, \mathbf{b}, \mathbf{c}) ;$ (ii) decreasing the node degree from ten to seven by removing three edges (Fig. 2a); (iii) finding the highest symmetry of the resulting 7 -coordinated net ($\mathrm{Pcca} \rightarrow \mathrm{Cmmm}$) with the program Gavrog Systre; (iv) decreasing the symmetry according to the sequence $C m m m \rightarrow C 2 / m \rightarrow C 2 / c(\mathbf{a}, \mathbf{b}, 2 \mathbf{c})$; (v) decreasing the node degree from seven to five by removing two further edges (Fig. 2b); (vi) finding the highest symmetry of the resulting 5 -coordinated net $(C 2 / c \rightarrow F d d d$; Fig. 2c). The latter net, $s q c 2-5-C 2 / c$, is obtained from the 8 -coordinated EPINET net $s q c 2$ (Pmmm) by the following sequence: (i) the group-subgroup transformation of the initial net, Pmmm \rightarrow Pccm (c, a, 2b) \rightarrow Ccce (2a, 2b, c) \rightarrow Pnna $(-\mathbf{b}, \mathbf{a}, \mathbf{c}$; $1 / 4,1 / 4,0$); (ii) decreasing the node degree from eight to six; (iii) finding the highest symmetry of the resulting 6-coordinated net (Pnna $\rightarrow P 4 / m m m$); (iv) decreasing the net symmetry by the transformations $P 4 / \mathrm{mmm} \rightarrow C m m m$ $(\mathbf{a}-\mathbf{b}, \mathbf{a}+\mathbf{b}, \mathbf{c}) \rightarrow C 2 / m \rightarrow C 2 / c(\mathbf{a}, \mathbf{b}, 2 \mathbf{c}) ;(\mathrm{v})$ decreasing the node degree from six to five; the resulting net has the highest possible symmetry. The nets hxg-d-5-Fddd and sqc2-5-C2/c relate to dia and lon nets as will be shown in §3.2.

Let us emphasize that the list of uninodal nets is not complete, but is closed, i.e. no uninodal subnet with new topology can be obtained from a net of the list and no new relations may be established between the nets of the NRG. However, a net may exist that is the supernet in relation to some nets listed. Anyway, such a net should not be crystallochemically 'significant' (see §3.3).

3.2. Transformation pathways between uninodal nets

The supernet-subnet relations enable one to find transformation pathways from one net to another as the paths in NRG. There are several advantages of this approach.
(i) Topologically, the fastest transformation, i.e. requiring the minimal number of acts of breaking or forming net edges, can be easily found corresponding to a shortest path of NRG.
(ii) Unlike all net-subnet transition mechanisms proposed earlier (Sowa \& Koch, 2001, 2002) that take into account only the transformations with a decrease of node degree (through a subnet), the alternative pathways passing through a supernet may be considered. For instance, the nets B_{5} and B_{6} (Fig. 1) may be transformed to each other both through the subnet B_{9} and through the supernet B_{3}. Although such mechanisms are not suitable for the nets, where the atoms have the largest possible coordination numbers, like polymorphs of carbon or silica considered in the papers cited, they may be important to describe transformations of the nets in more complicated compounds, in particular metal-organic substances, or to interpret pressure-induced phase transitions.
(iii) The transformation always passes through a common supernet or subnet, whose space group is a common super-
group or subgroup of the space groups of both initial nets. Therefore, the transformation is spatially continuous and requires the minimal number of acts to break existing bonds or to form new ones.
(iv) Using the net-subnet relations, one can find the transformation pathways with target interpenetrating arrays of uninodal nets. In this case, the initial structure may be a single net or also an interpenetrating array of nets of different topology or of the same topology and another number of nets in the array.

At the same time, the approach, being purely topological, gives no information about geometrical distortions of the nets and motion of atoms during the transition.

Example 1. Let us consider the possible transformation pathways for the nets of the diamond (dia, 4/6/c1) and the

Figure 3
(a) Relations between ths, sqp, dia and lon nets. The intermediate ths net of the $C 2 / c$ symmetry is shown by solid lines. Additional edges resulting in dia and lon nets are shown by dashed and dot-and-dashed lines, respectively. One of the dashed and one of the dot-and-dashed edges are coloured in green and magenta, respectively. One of the 10 -rings in the ths net is red. The 5 -coordinated net obtained from the ths net by adding both dashed and dot-anddashed edges is sqp. (b) Relations between hxg-d-5-Fddd, dia and lon nets. (c) Relations between noz, dia and lon nets. (d) Relations between $s q c 2-5-C 2 / c$, dia and lon nets. Breaking the red dot-and-dashed or the black dotted edges in the initial 5-coordinated net results in dia and lon nets, respectively.

Table 5
Possible transformation pathways from the diamond to the lonsdaleite topological type.

Transition net	Transformation pathway and resulting space group \dagger
Subnet ths	
	dia: $F d \overline{3} m \rightarrow R \overline{3} m(-1 / 2 \mathbf{a}+1 / 2 \mathbf{b},-1 / 2 \mathbf{b}+1 / 2 \mathbf{c}, \mathbf{a}+\mathbf{b}+\mathbf{c})$
	$\rightarrow C 2 / m(-1 / 3 \mathbf{a}+1 / 3 / \mathbf{b}-2 / 3 \mathbf{c},-\mathbf{a}-\mathbf{b}, \mathbf{c}) \rightarrow \boldsymbol{C} / \mathbf{c}(\mathbf{a}, \mathbf{b}, 2 \mathbf{c})$
	lon: $P 6_{3} / m m c \rightarrow P 31 c \rightarrow \boldsymbol{C 2 / c}(-\mathbf{a}-\mathbf{b}, \mathbf{a}-\mathbf{b}, \mathbf{c})$
Supernet	
noz	Cmce \rightarrow Pbcn (c, a, b; 1/4, 1/4, 0) (dia)
	Cmce \rightarrow C222 $_{1}(1 / 4,0,0)($ lon $)$
sqp	I4/mmm $\rightarrow \boldsymbol{C 2} / \mathbf{c}(\mathbf{c}, \mathbf{a}+\mathbf{b},-\mathbf{a + b} ; 1 / 2,0,0)(\mathbf{d i a})$
	I4/mmm \rightarrow Cmcm (a-b, a+b, c; $1 / 4,1 / 4,1 / 4$) (lon)
hxg-d-5-Fddd	$F d d d \rightarrow \boldsymbol{C 2} / \mathbf{c}(-\mathbf{b}, \mathbf{a}, 1 / 2 \mathbf{b}+1 / 2 \mathbf{c})(\mathbf{d i a})$
	Fddd $\rightarrow \boldsymbol{C 2 / c}$ (b, c, 1/2a-1/2b; 0, 1/4, 1/4) (lon)
$s q c 2-5-C 2 / c$	C2/c (dia, lon)

\dagger See footnote to Table 1.
lonsdaleite (lon, 4/6/h2) topological types. Sowa \& Koch (2001) proposed the only transition mechanism through a common 3-coordinated subnet utp (3/10/o1), whose space group (Pnna) is a common subgroup for the space groups of dia $(F d \overline{3} m)$ and lon $\left(P 6_{3} / m m c\right)$. However, according to Table 5, there is an additional transformation pathway through other 3-coordinated homogeneous sphere packings ths (3/10/t4, $I 4_{1} / a m d$) (Fig. 3a). Unlike the transition through utp, in this case the 3 -coordinated net has a lower symmetry than the idealized sphere packing.

Moreover, the transformation pathways dia \leftrightarrow lon may pass through the nets with a higher node degree (supernets). Because the most symmetrical dia and lon embeddings have no common supergroup, in all the cases the nets have lower symmetries for which the space group of the supernet is a common supergroup. For this reason, any transition mechanism through a supernet may be applied only to the topological types dia and lon, where the space-group symmetry is not crucial, not to the diamond and the lonsdaleite structure types with a fixed (highest) spatial symmetry. There are in total 93 shortest (with one intermediate net) transformation pathways of this kind in the NRG; 23 of them include one of the initial RCSR nets and/or sphere packings: 5-coordinated noz (Cmce) and sqp (5/4/t6, I4/mmm); 6-coordinated acs $\left(6 / 4 / h 2, P 6_{3} / m m c\right)$, pcu ($6 / 4 / c 1, P m \overline{3} m$) and sxa (Cmme); 7-coordinated $7 / 3 / \mathrm{m} 1$, ose ($7 / 3 / \mathrm{o5}$, Immm) and sev ($7 / 4 / o 1$, Fmmm); 8-coordinated bcu ($8 / 4 / c 1$, $\operatorname{Im} \overline{3} m$), eca $\left(8 / 3 / \mathrm{h} 3, P 6_{3} / \mathrm{mmc}\right)$, ecu $(8 / 3 / o 1, \mathrm{Cmcm})$, hex $(8 / 3 / \mathrm{h} 4, P 6 / \mathrm{mmm})$ and osb ($8 / 3 / \mathrm{o} 2$, Cmcm); 9-coordinated nce $(9 / 3 / t 2, I 4 / \mathrm{mmm}$) and nci $(9 / 3 / o 1, ~ F m m m) ; ~ 10$-coordinated bct (10/3/t1, $I 4 / \mathrm{mmm})$, cco ($10 / 3 / \mathrm{o} 1, \mathrm{Cmcm}$), chb ($10 / 3 / \mathrm{o} 2, \mathrm{Cmcm}$) and tca ($10 / 3 / h 2, P 6_{3} / m m c$); 11-coordinated elb (Cmce) and svi-x ($14 / \mathrm{mcm}$); 12-coordinated fcu ($12 / 3 / c 1, \mathrm{Fm} \overline{3} \mathrm{~m}$) and hep $\left(12 / 3 / \mathrm{h} 1, P 6_{3} / \mathrm{mmc}\right)$. Another 70 possible intermediate supernets are derived from bcu, ecu, hex, $s q c 2$, nce, bct, cco, chb, hxg-d, elb, svi-x, fcu and hcp. In Table 5, only the 5-coordinated supernets are considered, including the new nets hxg-d-$5-F d d d$ and $s q c 2-5-C 2 / c$, which require the minimal number of new bonds to be formed during the transition (Figs. 3a-d).

Table 6
Possible transformation pathways resulting in twofold ths interpenetrating array.

Initial net	Transformation pathway and resulting space group \dagger	Class of interpenetration
cds (4/6/t4)	$P 4_{2} / m m c \rightarrow P \overline{4} 2 c(0,0,1 / 4) \rightarrow \boldsymbol{P} \overline{\mathbf{4}} \boldsymbol{n} \mathbf{2}(\mathbf{a}-\mathbf{b}, \mathbf{a}+\mathbf{b}, \mathbf{c})$	Ia
dmp	Pnna \rightarrow Pnn2 (1/4, 0, 0)	Ia
sqc2075	I4/mcm \rightarrow Ibam	IIa
tcb	Pnna \rightarrow Pnn2 (1/4, 0, 0)	Ia
unm (4/6/t5)	$P 4_{2} \mathbf{2}_{12}$	Ia
upa ($4 / 4 / t 11$)	$P 4_{2} 2_{1} 2$	Ia
4/5/t2	I42d	IIa

\dagger See footnote to Table 1.

Note that ths and sqp nets correspond to the same topological motif, intermediate between dia and lon (Fig. 3a). Moreover, the dia and lon nets derived from $s q c 2-5-C 2 / c$ have the symmetry and unit cell of the initial net (Table 5), and the basic 3-coordinated net formed by solid edges in Fig. 3(d) is again ths.

Example 2. The interpenetrating array of two ths nets has one of the largest NRG degrees (814) among the interweaving motifs. This means that it can be derived from 814 topological types of nets with a higher node degree. However, only 51 cases correspond to 4 -coordinated nets, i.e. require breaking merely one edge per node to give rise to the target ths array; seven of them are well known nets (Table 6; Figs. $4 a-g$). Note that in the last three cases in Table 6 the symmetries of supernet and subnet are the same. Moreover, corresponding lattice complexes are mentioned by Koch et al. (2006) as containing twofold interpenetrating sphere packings of two types: $t[3 / 10 / t 4]^{2}$ and $t[3 / 10 / t 4]^{2}{ }_{\text {II }}$. This fact together with the data of Table 6 on classes of interpenetration (Blatov et al., 2004) shows that different initial nets can give rise to different interpenetration modes of resulting arrays. Let us emphasize that the method described here allows one to find all interpenetrating motifs irrespective of their relation to sphere packings.

Example 3. The 6-coordinated net roa (Cccm) can be transformed to both twofold (Pnn2; Class Ia) and sixfold (Fddd; Class IIIa) ths interpenetrating arrays by the routes Cccm \rightarrow Ccc2 \rightarrow Pnn2 and Cccm \rightarrow Pnnn $(1 / 4,1 / 4,0) \rightarrow$ $F d d d(2 \mathbf{a}, 2 \mathbf{b}, 2 \mathbf{c})$, respectively. Therefore, there is the transformation pathway twofold ths \leftrightarrow roa \leftrightarrow sixfold ths (Figs. $5 a$, $b)$, moreover, according to the NRG, this is the only two-step pathway through a single net to increase the number of ths nets in the array up to six. Note that the example of a sixfold ths array was found in metal-organic compounds (ZIBRAD) with the same space group and class of interpenetration (Blatov et al., 2004).

3.3. The graph of topological relations between uninodal nets

Among 6528 nets composing the NRG, there are 248 interpenetrating arrays with the number of single nets in the

Table 7
List of the $N R G$ generators.

Node degree	Net name
4	fau, kfi, lcv-a, mdf, tcb, ten, wse
5	fce, fch, fcl, fcm, fcn, fco, fda, fdc, fnn, lcy-a-x, srs-f, srs-g, wjk, wjm, wjn, wjq, wjr, wju, wjv, wjw
6	ana-e, nbo-f-z, pcu-m, roa, snb, snf, snh, snr, snv, sxi, sxm, sxn, sxo, sxp, twf-e, wgz, whe, who, whq, whs, wii, wij, wip, wiq wir, wis, wit, wjb, wkj, wkk, wkl, wkm, wkn, wko, wkp, wkq wkr, wks, wmd, wmp, wmq, wmt, wne
7	$7 / 3 / t 43,7 / 3 / t 44$, gar-e, iac-e, ocu-e, sva, svm, svu, svv, svw, svx, svz, swa, swb, swe, swf, swh, toc-e, wfr, wfx, wje, wkt, wku, wkv, wnh, wni, wnl, wnr, wnu, wnv, wnw, wnx, wny, xfa, xfi xfj, xfk, xfl, xfm, xfn, xfo, xfp, xfq, xfr, xfs
8	bcs-e, ece, ech, eco, ecq, ecr, ecs, ect, ith-e, wfj, wfk, wfl, wfm, wfn, wfo, wfp, wkw
9	naz-x, nca, nce, nck, thp-e, wal, wfe
10	hxg-d, lcw-x, tee, tch, tci
11	ele, elf, svi-x
12	fcu, hep, nbo-x, thp-x

Table 8
The single nets with a large NRG degree (>350).

Net	Node degree	NRG degree	Net	Node degree	NRG degree
fcu $(12 / 3 / c 1)$	12	2231	nce $(9 / 3 / t 2)$	9	496
fcu-11- $P 4_{2} / m c m$	11	1149	ths $(3 / 10 / t 4)$	3	479
fcu-10-Cmme	10	839	pcu $(6 / 4 / c 1)$	6	442
hxg-d	10	780	cds $(4 / 6 / t 4)$	4	434
sqc2	8	771	fcu-10-P4222	10	408
fcu-10- $P 4_{2} / m m c$	10	721	dia $(4 / 6 / c 1)$	4	396
bct $(10 / 3 / t 1)$	10	642	fcu-9-Pccm-1	9	394
svi-x	11	614	dia-f $(3 / 4 / t 1)$	3	388
fcu-11-Ibam	11	539	fcu-9-Pccm-2	9	365
hcp $(12 / 3 / h 1)$	12	535	$\mathbf{s q p}(5 / 4 / t 6)$	5	362
bnn $(5 / 4 / h 5)$	5	517			

array, Z, varying in the range $2-8$. There are 197 arrays with $Z=2 ; 24$ with $Z=3 ; 23$ with $Z=4$; two with $Z=5$ [the single net topologies are dia-a $(4 / 3 / c 6)$ and dia-f $(3 / 4 / t 1)$], one with $Z=6$ (ths) and one with $Z=8$ (srs-a, $3 / 3 / c 1$). Note that the interpenetrating arrays were distinguished only by topology of the single net and Z, no other characteristics of interpenetration were considered (cf. Koch et al., 2006). The NRG consists of two separate subgraphs; the main subgraph includes 6524 nets, it is analysed in detail below. The second subgraph includes only four nets: $3 / 8 / c 3$, rhr-a ($3 / 4 / c 9$), kfi ($4 / 4 / c 19$, zeolite KFI) and wse ($4 / 4 / c 18$), which are related as shown in Fig. 6. This means that the four nets cannot be transformed to other nets through common 3-12-coordinated uninodal supernets or subnets. The nets that have no supernets in the NRG are of special interest; they can be considered as the NRG generators because all other nets can be obtained as their descendants (subnets). The number of such generators (151) is unexpectedly large; all of them are listed in Table 7.

Not all nets play the same role in the main subgraph; it is reasonable to arrange them according to their NRG degree. Obviously, the nets with a large NRG degree are important

Table 9
The nets with largest NRG degrees depending on node degree of the net.

Node degree		NRG degree	MOFs \dagger	Node degree		NRG degree	MOFs \dagger
3	ths (3/10/t4)	479	2	5	bnn (5/4/h5)	517	1
	dia-f ($3 / 4 / t 1$)	388			$\mathbf{s q p}(5 / 4 / t 6)$	362	2
	dia-g (3/4/t2)	216			sxa-5-Pccm-1	272	
	utg (3/8/t5)	188			sxa-5-Pccm-2	270	
	srs (3/10/c1)	178	1		sxa-5-Cmmm	255	
	3/8/t6	168			5/4/t5	240	
	hxg-d-3-I4, 22	146			6/4/t8-5-Ibam	238	
	pcu-h (3/6/h1)	131			nov	208	\ddagger
	bto (3/10/h1)	113			sxa-5-Ibam	195	
	utp (3/10/o1)	104			bet-5-Ibam	181	
4	cds (4/6/t4)	434	4	6	pcu (6/4/c1)	442	1
	dia (4/6/c1)	396	1		sxa	287	
	4/4/t37	325			msw	229	
	irl (4/4/o2)	319	10		svi-x-6-P42/mcm	185	
	sra (4/4/o1)	300	2		rob	173	
	crb (4/4/t5)	254	5-7		sxd (6/3/o1)	159	
	Ion (4/6/h2)	236	8-9		hxg-d-6-Pccm	153	
	sni-4-P4/nbm	234			hxg-d-6-Cmmm	151	
	neb (4/6/o1)	227			hxg-d-6-P422	145	
	4/4/t43	194			$\boldsymbol{\operatorname { s n p }}(6 / 3 / t 5)$	136	

\dagger Position in the list of occurrence of uninodal nets of a given coordination in metalorganic frameworks according to Ockwig et al. (2005). \ddagger The number of cases is less than three.
because they lie on many transformation pathways (cf. Fig. 1). It is not surprising that the first places are occupied by highcoordinated nets (with node degree 10-12) that have a large number of subnets (Table 8). However, not all high-coordinated nets are at the top of the list; the place evidently depends on the peculiarities of the net topology and symmetry. Thus, a face-centred cubic lattice (fcu) has NRG degree much larger than other nets, moreover, many leading nets are derived from fcu. Comparatively, the other uninodal close sphere packing, hcp, has a significantly smaller NRG degree. This fact probably explains why the fcu motif prevails over the hcp topology in the architecture of organic crystals (Peresypkina \& Blatov, 2000).

For crystal chemistry, it is important to take into account the net coordination; the high-coordinated nets are rare in metalorganic frameworks due to rather low typical coordination numbers (3-6) of the metal centres. Some well known lowcoordinated nets, such as ths, dia, cds, pcu, compete with the high-coordinated ones in the list of nets with large NRG degree (Table 8). In Table 9, for each node degree in the range $3-6$, the top ten single nets are given; most of the nets were found in real crystal structures and have familiar RCSR names. In all cases, the top nets frequently occur in metalorganic frameworks according to Ockwig et al. (2005). However, the order of occurrence does not always coincide with the order of NRG degree. Obviously, other, not only topological, reasons should be taken into account; for instance, the tetrahedral coordination is more typical for the metal centres than the rectangular coordination and, as a result, the dia topology prevails over the cds topology in metal-organic frameworks. At the same time, according to

Table 9, some nets with a large NRG degree are not listed in RCSR; among them there are sphere packings $3 / 8 / t 6,4 / 4 / t 37$, $4 / 4 / t 43$ and $5 / 4 / t 5$.

For crystal design, it could be useful to know what kinds of interpenetration often occur in the net interrelations. Table 10 contains such information for 3- and 4-coordinated nets because they mostly form interpenetrating arrays. As for
single nets, the interpenetrating arrays with a large NRG degree are frequent in metal-organic (Blatov et al., 2004) and inorganic (Baburin et al., 2005) crystals. Moreover, the topologies of the top single and interpenetrating nets are often the same (Tables 9, 10); this fact is especially interesting because they relate to quite different nets in the NRG. It is noteworthy that the top interpenetrating arrays (Table 10)

Figure 4
Relations between a set of two ths nets and the nets: (a) cds; $(b) \mathbf{d m p} ;(c)$ sqc2075; (d) tcb; $(e) \mathbf{u n m} ;(f)$ upa; (g) 4/5/t2. Different ths nets are differently coloured. The edges to be broken in the initial nets are dotted. In each case, a couple of catenating 10-rings of the ths nets is selected. In sqc2075, some edges of intersecting 10 -rings cross each other.
have large NRG degrees, i.e. they could be intermediate structures in many phase transitions.

Thus, large NRG degree is an important topological criterion for the net to be of interest in crystal chemistry. The following physical model may be proposed to support such an approach. Let us consider a liquid near the crystallization point when most of the atoms are close to the positions in the subsequent crystal. At this moment, not all interatomic bonds are formed: the liquid 'searches' for an appropriate topology by breaking existing contacts and forming new ones. In other words, the liquid passes over many topologies that are asso-

Figure 5
Relations between two- and sixfold ths arrays and a roa net. Breaking dotted edges in the initial roa net results in (a) a twofold and (b) a sixfold ths array. Different nets in the arrays are differently coloured.

Table 10
The interpenetrating net arrays with largest NRG degrees depending on the net coordination.

Node degree	Net	Z	NRG degree	MOFs \dagger	Inorganic \dagger
3	dia-f (3/4/t1)	4	839		
	ths ($3 / 10 / t 4$)	2	814	2	2
	srs (3/10/c1)	2	785	1	1
	utp (3/10/o1)	2	667		
	srs (3/10/c1)	4	525	\ddagger	
	dia-f (3/4/t1)	2	259	\ddagger	
	$\boldsymbol{\operatorname { l i g }}(3 / 8 / t 1)$	4	252		
	lig (3/8/t1)	2	221	\#	
	ths ($3 / 10 / t 4$)	3	191	\ddagger	
	dia-f (3/4/t1)	3	153		
4	dia (4/6/c1)	2	826	1	1
	sra (4/4/o1)	2	779	3	\ddagger
	irl (4/4/o2)	2	557	\ddagger	
	lvt (4/4/t1)	2	404	\ddagger	\ddagger
	uoc (4/4/t2)	2	313		
	dia-a (4/3/c6)	4	278		
	4/4/t37	2	271		
	crb (4/4/t5)	2	201		
	5/4/t5-4-Pnnn	2	183		
	5/4/t5-4-C222	2	168		

\dagger Position in the list of occurrence of interpenetrating uninodal nets of a given coordination in metal-organic (Blatov et al., 2004) or inorganic (Baburin et al., 2005) frameworks. \ddagger The number of cases is three or less.
ciated by supernet-subnet relations. Certainly, at this stage, the nets are not periodic, but they may be considered to be isomorphic to three-periodic nets. As a first approximation, one may expect that the system will most often pass over the nets that have many relations with super/subnets, i.e. have a large NRG degree. Therefore, with a high probability, the system will have the topology of one of these nets after crystallization. If one assumes that Nature prefers high-symmetry (uninodal and/or edge-transitive) nets (Ockwig et al., 2005), then the nets listed in Tables $8-10$ should draw attention as the most suitable templates for crystal engineering.

Obviously, the NRG degree is not the only criterion for the crystallochemical 'significance' of a net. As was mentioned in $\S 2.2$, a short adjacency sequence indicates that the net is near the 'centre' of the NRG, i.e. easily attainable from other nets.

Figure 6
A part of the NRG consisting of four nets. The arrows indicate decrease of node degree during the corresponding supernet-subnet transition.

However, the length of the adjacency sequence is found to be non-characteristic: all the nets with a large NRG degree have adjacency sequences of length $8-10$; the shortest length (8) occurs for the net bnn. It seems more important to consider other terms of adjacency sequence in addition to N_{1}. Thus, the value of N_{2} is equal to the number of nets that can be transformed to a given one in two steps. Since the mechanisms of phase transitions do not assume a larger number of steps, as a rule, the nets with large N_{1} and N_{2} are of special interest. They are indicated at the top of Fig. 7; many of them are at the head of the lists in Tables 9 and 10. Moreover, according to Fig. 7, there are three distinct groups of nets in the NRG: (i) the nets with extremely large N_{1}; they are collected in Table 8 and scattered in the right part of Fig. 7; (ii) the nets with large N_{2} (>2000); many of them also have a large N_{1} (top left part of Fig. 7); (iii) the nets with N_{1} not large and $N_{2}<2000$ (bottom left part of Fig. 7). Obviously, the last group contains crystallochemically 'insignificant' nets.

4. Concluding remarks

The results presented above demonstrate that one of the most important problems of modern crystal chemistry, the determination of suitable topological motifs for systems of interatomic bonds in crystals, may be considered from a new viewpoint. The proposed criteria for crystallochemically

Figure 7
The distribution of the uninodal nets depending on the first two terms, N_{1} and N_{2}, of their adjacency sequences in the NRG. The three groups of nets are separated by rectangles. Some important nets are designated.
'significant' nets are based on supernet-subnet relations and, being purely topological, are independent of geometrical properties of crystal structures, such as unit-cell dimensions or features of atomic packings. They rest upon the criteria introduced by Ockwig et al. (2005), but extend their list and turn from general symmetry properties of nets to a more detailed consideration of their topological peculiarities. Obviously, the topological criteria should be used along with well known crystallochemical descriptors referred to local (stereochemical) or global (packing) geometrical properties of crystals. Certainly, the uninodal nets do not cover all crystallochemically 'significant' topological motifs. At least two other groups of nets, edge-transitive and binodal, should be studied to make the analysis more complete. They will be treated in a further publication.

APPENDIX A

Basic definitions

A net is a kind of graph that is simple (without loops and multiple edges; the edges are undirected) and connected, i.e. each graph vertex is accessible from any other vertex through a chain of edges; the vertices of the graph are called nodes of the net. A certain set of net edges (or pairs of adjacent nodes) determines net topology. Two nets are isomorphic if there are one-to-one correspondences between their sets of nodes and edges. The net is periodic if its symmetry group contains a subgroup of translations. The net is uninodal and edge-transitive if all its nodes and edges are symmetrically equivalent. A net is n-coordinated if the degree of any of its nodes is equal to n.

A subnet (supernet) of a net A is a net whose sets of nodes and edges are subsets (supersets) of corresponding sets of A.

A labelled quotient graph is a finite graph whose vertices and edges correspond to sets of translationally equivalent net nodes and edges. It may have multiple edges and loops if corresponding net edges connect translationally different or translationally equivalent nodes, respectively.

An embedding of a net is its realization in a space. Euclidean embeddings are of special interest for crystal nets. In this paper, we mainly consider faithful Euclidean embeddings where net nodes do not coincide with each other and there are no crossings between edges.

A three-dimensional net is a net that has an embedding into a three-dimensional space.

A coordination sequence $\left\{N_{k}\right\}$ is a set of sequential numbers N_{1}, N_{2}, \ldots of nodes in first, second etc. coordination shells of a node in the net. The node degree is equal to N_{1}, and the node is called N_{1}-coordinated.

A circuit (cycle) is a closed chain of connected nodes.
A ring is a circuit without shortcuts, i.e. chains between two circuit nodes that are shorter than any chain between these nodes that belongs to the circuit.

An extended Schläfli symbol (circuit symbol) contains a detailed description of all shortest circuits for each angle (a couple of edges) at each inequivalent node.

A vertex symbol gives information similar to the extended Schläfli symbol, but for rings.

A net relation graph (NRG) is a graph whose vertices and edges correspond to nets and supernet-subnet relations between them.

The author thanks Professor M. O'Keeffe, Professor D. M. Proserpio, Dr S. T. Hyde, I. A. Baburin and an anonymous referee for many useful comments concerning the manuscript.

References

Baburin, I. A., Blatov, V. A., Carlucci, L., Ciani, G. \& Proserpio, D. M. (2005). J. Solid State Chem. 178, 2452-2474.

Blatov, V. A. (2006a). Acta Cryst. A62, 356-364.
Blatov, V. A. (2006b). IUCr CompComm Newsletter, 7, 4-38.
Blatov, V. A., Carlucci, L., Ciani, G. \& Proserpio, D. M. (2004). CrystEngComm, 6, 377-395.
Carlucci, L. Ciani, G. \& Proserpio, D. M. (2007). Making Crystals by Design. Methods, Techniques and Applications, edited by D. Braga \& F. Grepioni, pp. 58-85. Darmstadt: Wiley.
Delgado-Friedrichs, O., Foster, M. D., O'Keeffe, M., Proserpio, D. M., Treacy, M. M. J. \& Yaghi, O. M. (2005). J. Solid State Chem. 178, 2533-2554.
Delgado-Friedrichs, O. \& O’Keeffe, M. (2003). Acta Cryst. A59, 351-360.
Delgado-Friedrichs, O. \& O'Keeffe, M. (2005). J. Solid State Chem. 178, 2480-2485.

Delgado-Friedrichs, O., O'Keeffe, M. \& Yaghi, O. M. (2006). Acta Cryst. A62, 350-355.
Eon, J.-G. (2005). Acta Cryst. A61, 501-511.
Hyde, S. T., Delgado-Friedrichs, O., Ramsden, S. J. \& Robins, V. (2006). Solid State Sci. 8, 740-752.

International Tables for Crystallography (2004). Vol. A1, edited by H. Wondrachek \& U. Müller. Dordrecht/Boston/London: Kluwer Academic Publishers.
Klee, W. E. (2004). Cryst. Res. Technol. 39, 959-968.
Klein, H.-J. (1996). Math. Model. Sci. Comput. 6, 325-330.
Koch, E. \& Fischer, W. (1995). Z. Kristallogr. 210, 407-414.
Koch, E., Fischer, W. \& Sowa, H. (2006). Acta Cryst. A62, 152-167.
Leoni, S. \& Zahn, D. (2004). Z. Kristallogr. 219, 339-344.
Ockwig, N. W., Delgado-Friedrichs, O., O'Keeffe, M. \& Yaghi, O. M. (2005). Acc. Chem. Res. 38, 176-182.

Öhrström, L. \& Larsson, K. (2005). Molecule-Based Materials. The Structural Network Approach. Amsterdam/Oxford/San Diego/ London: Elsevier.
O'Keeffe, M. (2006). Private communication.
O'Keeffe, M. \& Hyde, B. G. (1996). Crystal Structures. I. Patterns and Symmetry. Washington, DC: Mineralogical Society of America.
Peresypkina, E. V. \& Blatov, V. A. (2000). Acta Cryst. B56, 1035-1045.
Sowa, H. (2005). Acta Cryst. A61, 325-330.
Sowa, H. \& Koch, E. (2001). Acta Cryst. A57, 406-413.
Sowa, H. \& Koch, E. (2002). Acta Cryst. A58, 327-333.
Wells, A. F. (1954). Acta Cryst. 7, 535-544.
Wells, A. F. (1977). Three-Dimensional Nets and Polyhedra. New York: Interscience.

[^0]: ${ }^{2}$ Reticular Chemistry Structure Resource, http://rcsr.anu.edu.au/.
 ${ }^{3}$ Hereafter, the RCSR three-letter symbols (if any) are used for nets. Fischer's symbols $k / m / f n$ ($c f$. Koch et al., 2006) are given for sphere packings together with the RCSR names.

[^1]: ${ }^{1}$ The definitions of the basic terms marked as bold italic are given in Appendix A. For more complete information on the terminology relating to crystal nets and graphs, see Delgado-Friedrichs \& O'Keeffe (2005) and Carlucci et al. (2007).

[^2]: ${ }^{4}$ TOPOS Topological Database, http://www.topos.ssu.samara.ru.

[^3]: ${ }^{5}$ Euclidean Patterns in Non-Euclidean Tilings, http://epinet.anu.edu.au/.
 ${ }^{6}$ The crystallographic data and topological indices for all new uninodal nets are available as TOPOS crystallographic and topological databases at http:// www.topos.ssu.samara.ru.

